Homework #6

- 1) Write the first 2 non-vanishing terms for the r > R potential due to a charge distribution of the form $\sigma = +k$ for $0 < \theta < \pi/2$ and $\sigma = -k$ for $\pi/2 < \theta < \pi$.
- 2) The potential on the surface of a charged, spherical shell of radius R is given by $V(R) = \beta \cos^2 \theta = \frac{\beta}{3} P_0(\cos \theta) + \frac{2\beta}{3} P_2(\cos \theta)$.
 - (a) Calculate the surface charge density on the shell required to create this potential. Hint take the glued charge potential, evaluate it at r = R, and equate it to V(R).
 - (b) Is there a stable equilibrium point for a point-charge placed within the sphere? This is an example of Earnshaw's Theorem. Hint--write the potential for a point within the sphere in Cartesian coordinates.
- 3) Recall the problem of a charge distribution of the form $\sigma = k \cos^2 \theta$ glued to an insulating spherical shell of radius R discussed in lecture. In this problem we will compute the electrostatic pressure on an infinitesimal patch of charge on the "north pole" at $\theta = 0$ in two ways. Feel free to use any and all of the results obtained in lecture to help you. Hint-in computing the force on a patch of charge it is important to remove the field due to the charge itself.
 - a) Compute the pressure using the $V(r > R) = \sum_{\ell=0.1.2} \frac{B_{\ell}}{r^{\ell+1}} P_{\ell}(\cos \theta)$ expression.
 - b) Check your result by computing the pressure using the $V(r < R) = \sum_{\ell=0.1.2} A_\ell r^\ell P_\ell(\cos\theta)$ expression.
- 4) Griffiths Problem 3.23. Hints: The azimuthal part of the solutions is sinusoidal with an integral constant of separation to insure that $\Phi(\phi + 2\pi) = \Phi(\phi)$. The comment concerning the infinite line solutions with $S \propto \ln s$ is relevant for the case where $\Phi(\phi)$ is a constant. Try a power law solution for S(s) associated with the other sinusoidal $\Phi(\phi)$ possibilities.

5) Expand
$$\frac{1}{r} = \frac{1}{|r|\hat{r} - r'\hat{r}'|} = \frac{1}{r} \left(1 + \left[\left(\frac{r'}{r} \right)^2 - \frac{2r'}{r} \hat{r}' \cdot \hat{r} \right] \right)^{-1/2}$$
 up to and including the $\frac{1}{r} \left(\frac{r'}{r} \right)^2$ terms using the binomial expansion:
$$(1+x)^N \approx 1 + Nx + \frac{N(N-1)}{2} x^2 + \cdots .$$
 Compare to the "generator" function expansion to show that $P_2(\hat{r} \cdot \hat{r}') = \frac{3(\hat{r} \cdot \hat{r}')^2 - 1}{2}$.

6) Consider a charge distribution of the form $\rho = \rho_0 z \exp\left(-\beta \left[x^2 + y^2 + z^2\right]\right)$. Find the dipole moment $\vec{p} = \int \rho \, \vec{r} \, d\tau$ and use it to obtain an approximate expression for the potential far from the origin. Hint—these integrals are useful in either Cartesian or spherical coordinates

Gaussian full integrals

$$\begin{split} I_n &= \int_{-\infty}^{+\infty} dx \ \mathbf{x}^{\mathrm{n}} \exp(-\beta x^2) \ ; \ I_{n+2} = -\frac{\partial I_n}{\partial \beta} \ ; \ I_0 = \sqrt{\pi} \beta^{-1/2} \\ I_2 &= \sqrt{\pi} \bigg(\frac{1}{2}\bigg) \beta^{-3/2} \ ; \ I_4 = \sqrt{\pi} \bigg(\frac{1}{2}\bigg) \bigg(\frac{3}{2}\bigg) \beta^{-5/2} \ ; \ I_6 = \sqrt{\pi} \bigg(\frac{1}{2}\bigg) \bigg(\frac{3}{2}\bigg) \bigg(\frac{5}{2}\bigg) \beta^{-7/2} \end{split}$$