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Boundary conditions on 
a spinning charge ball

There are several ways that materials can interact with magnetic fields.  The first of 
this is called diamagnetism where an applied magnetic field induces a magnetic 
moment in the material that opposes the applied field. We can think of this as 
turning on an applied  B-field induces an EMF in the atomic orbitals that opposes 
the B-field in accordance with Lenz’s law which you learned about in Physics 212.  
Hence all materials exhibit some diamagnetisation. In materials with an odd number 
of electrons, there is a competing effect called paramagnetism which often 
overwhelms the diamagnetization. Essentially the magnetic moment of the unpaired 
electron lines up with the applied B-field in order to minimize its energy. In much the 
same way as an electric field creates bound charges on the surface of a dielectric, a 
magnetic field creates bound currents on the surface of a magnetic material. Just 
like the D-field has a Gauss’s law that only depends on free charges, the H-field has 
an Ampere’s law that is only sensitive to free currents. We next discuss the 
boundary conditions that apply on the surface of a magnetic material, and show that 
our spinning ball example from last time obey’s these boundary conditions. We 
conclude by discussing superconductors which can be thought of as an extreme 
diamagnet and ferromagnets which can be thought of as an “extreme” paramagnet.
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Magnetic Fields in Matter
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The interaction of magnetic fields and materials is essentially an atomic phenomena and can only 
really be described using quantum mechanics. There are basically two competing effects called 
diamagnetism and paramagnetism. In diamagnetism, the atomic current loop reacts to the applied B 
field in a way to oppose the applied field by creating an induced magnetic moment that opposes the 
field.  There are several classical ways of viewing this.  Griffiths gives a classical argument for 
diamagnetism based on having the Lorentz force increase the centripetal force and the electron 
speed. Of course this is providing work on the electron and magnetic fields do no work.  The work 
must be provided by a changing magnetic field, creating an EMF according to Faraday’s Law. As you 
recall from Physics 212, this EMF is in the direction to oppose the change in flux through the orbit 
and hence it is naturally that the induced field opposes the applied field.  Of course the orientation of 
the atomic dipoles is random but the induced change in the moment always opposes the applied B 
and hence the average m opposes B.  
Paramagnetism is a competing effect that puts the induced dipole moment parallel to B. The recall 
lowest potential energy state (U) has m parallel to B.  Classically m || B is the stable equilibrium 
direction for the dipole orientation and any torque will try to get the m-vector parallel to B. We can 
also discuss the problem in a quantum framework. At low temperatures the atoms will preferentially 
populate the ground state. As the temperature increases, thermal fluctuations will randomize the 
states and the paramagnetic preference will wash out, thus M goes as 1/ temperature according to 
the Curie Law. Paramagnetism tends to dominate when materials have an unpaired electron (odd Z).  
The paired electrons have canceling spins. Both diamagnetism and paramagnetism tend to be fairly 
weak effects.  But there are two extreme examples called ferromagnetism and superconductivity that 
we discuss later.
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As is the case for the response of materials to electric fields, the response to magnetic fields is 
parameterized by an induced dipole moment per unit volume. In the magnetic case this is a magnetic 
dipole moment which is essentially the electron orbital current times the orbit area. The magnetic 
case is basically a recycled version of the electric case.  The electric case is based on the voltage 
contribution of an electric dipole moment. The magnetic case uses the vector potential for a magnetic 
dipole which we derived in the magnetostatics chapter. We change the magnetic dipole to a magnetic 
dipole density (or magnetization) and then into a bound current J_b and bound surface current K_b
using the similar tricks as those used for the electric dipole polarization.  We begin by writing the r-
hat/r^2 that appears in the dipole vector potential as the gradient of 1/r. We use integration by parts 
to transfer the del operator from 1/r to M (the magnetic dipole density) plus a surface term. The 
resultant integrals look the same as the vector potential for a current density J and a surface current 
K.  For the magnetic case these are related to the cross product of del and the magnetization for J 
(eg the curl) and the cross product of the magnetization density (M)  and the area normal for K. For 
the electric case we used dot products with the polarization (P). Griffiths emphasizes that although 
we obtained the current densities using some slick mathematical tricks – they represent real “bound”
surface (K) and volume currents (J).  This sketch shows how the surface current develops from a 
collection of atomic orbitals. Adjacent orbitals in the interior of the material produce cancelling 
currents. But orbitals on the material surface have no canceling currents and hence a bound surface 
current can exist. Many of the magnetic problems discussed here involve just the bound surface 
currents just like many of the electric problems just involve bound surface charge. But in principle 
both bound surface currents and volume currents can be present.
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Uniformly Magnetized  Cylinder
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As a first (simple) example we consider a permanently magnetized (infinite) 
cylinder.  We model this with a constant magnetic dipole density (or magnetization) 
M pointing in the z direction of a cylindrical coordinate system. The curl of a 
constant M is zero and hence there are no volume (J) currents. The surface normal 
is in the direction of the radial vector s-hat. Hence using the right hand rule you can 
verify that M cross s is in the phi direction. Hence the bound surface current circles 
the circumference of magnetized cylinder just like the currents of a solenoid. We 
can then solve for the magnetic field using the same Amperian loop approach used 
for the infinite solenoid. We use a loop perpendicular to K_b with an arbitrary length 
L_perp. One end of the Ampere loop extends into the solenoid and one extends 
outside of the solenoid in the field free region. Recall the total enclosed current for a 
surface current is equal to the perpendicular length which “cuts” K.  We get the 
same simple result that B is mu_0 times the surface current which in this case 
means B is equal to mu_0 times the magnetization M inside the cylinder and 0 
outside the cylinder. The situation for a finite length magnetized cylinder will be 
more complicated.  There will be outside field lines which cycle from the north pole 
(top) to the south pole (bottom).
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Uniformly magnetized sphere
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This example is based on Griffiths Ex. 5.11 -- the spinning charged metal sphere. 
Recall we solved this problem using a Laplace Eq. approach for the scalar magnetic 
potential V. We have a constant magnetization M aligned along the z axis of a 
spherical coordinate system. We first find the bound currents using the 
magnetization. Since we are using a constant M with zero curl, the bound J current 
is zero. We can find the bound surface current K by crossing the surface normal (r-
hat) with M. We can do this by writing z-hat as a combination of the spherical unit 
vectors r-hat and theta-hat. Since r-hat cross r-hat is zero, we only get the theta-hat 
cross r-hat piece which is in the phi-hat (azimuthal) direction and is proportional to 
sin(theta). We get the same sin (theta) phi-hat form for the surface current in this 
case as we had for the spinning ball of charge. This allows us to steal the spinning 
ball results with the substitution (sigma omega R) => M. Hence we can purloin the 
expression for expression for the magnetic field inside the ball.  As was the case for 
the magnetized cylinder, we find the magnetic field for the ball is proportional to 
mu_0 times the magnetization but there is an additional factor of 1/3 for the sphere 
which was not present for the cylinder.  The uniform polarized sphere solution, 
requiring the full Laplace Eqn. machinery, we found an E= field proportional to the 
electric dipole moment per unit volume (P). For the electric case we get a 
denominator epsilon_0 factor rather than a numerator mu_0 factor. Interestingly 
enough for the electric case we have a minus 1/3 factor rather than the positive 2/3 
factor that we have for the magnetic case. 
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The H-field
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To further the strong analogy between magnetic and electrical response of 
materials, we invent a magnetic “auxillary” field called H in strong analogy with D-
field (displacement field) which was the electric “auxillary” field.  Like the D-field, H-
field depends only on free currents.  As a simplest example, we reconsider the 
magnetized, infinite cylinder. There are no free currents and Ampere’s Law says H 
= 0. This means M just cancels B and we immediately get the previous result. If we 
try to get B for the magnetized sphere in the same way (eg no free currents implying 
no H implying B cancels M) we run into problems. We get the wrong answer and 
miss the 2/3 factor. The problem is that no free currents only implies that the curl of 
H is zero which means  line integral of H is zero. This is very different from the 
statement that H is zero everywhere. For the case of the sphere, there is an H-field 
outside the sphere which can contribute an H line integral that cancels the H line 
integral inside the sphere.   For the sphere we don’t have enough symmetry to 
assume that a vanishing H line integral implies a vanishing H inside the sphere.  
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Definition of μ in linear media
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A linear media is a material where B is proportional to H.  The vacuum is a linear media where B is 
mu_0 times H. We can extend this to linear material by saying B = mu H: mu > mu_0 for 
paramagnetic material and mu < mu_0 for diamagnetic materials. The same thing happens for the 
electrical field.  D is proportional to E with a proportionality constant of epsilon which usually exceeds 
epsilon_0 by a factor of Kappa.  For historical reasons, the magnetic definitions are the reciprocal of 
the electric definitions. For the E-case the auxillary D field  gets an additional factor epsilon from the 
physical E-field.  For the B-case the physical field B appears to be scaled version of the auxillary H-
field. As a result the magnetization is not proportional to kappa –1 times the B field but has a less 
transparent form.  
Recalling the E-field case -- please do not think of the B-field as just a scaled version of H: such as 
thinking that B is just H in different units.   Recall in the case of electrostatics the curl of E is zero but 
the curl of D might not be zero since the curl of the polarization might not vanish. In the case of 
magnetostatics, the divergence of B (ie del dot B) is zero, but  the divergence of H may not be since 
there is no guarantee that the divergence of M is zero. To illustrate the perils of stretching the 
analogy, if we found a case where H had a non-zero divergence – we might conclude that there 
exists a free magnetic charge density in analogy with the divergence of E being proportional to the 
electric charge density rho. The uniformly magnetized sphere is an example where we have an 
infinite divergence on the surface of the sphere . We could find the sigma for these magnetic charges 
using the usual Gaussian pill box. We would mistakenly conclude that we found a surface monopole
density consisting of  isolated north or south poles or monopoles.  There is no evidence for magnetic 
monopoles although they have been extensively and sensitively searched for. Hence the divergence 
of H can often be non-zero but the divergence of H has nothing to do with the monopole density. 
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The magnetic wire
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Calculate H from free currents 
and then calculate B

Calculate bound currents from M

Calculate B from free and bound currents

Here we consider a thick wire which carries a uniform, free current density (J_0) in 
the z-direction. The wire is made of a magnetic material with a magnetic 
permeability of Kappa. Since the curl of H only depends on the free current, we can 
write a line integral expression for H_phi both inside and outside the wire. We can 
also find B from mu H .  We can then compute the bound current density and 
surface current from the magnetization which can be found from B and H. The 
bound current density is given by the curl of M which is turns out to be (kappa -1) 
times the free current density.  The surface current exists only at the radius R and 
points in the opposite direction as the free current. To complete the exercise we 
compute the B-field from the free and bound currents using the integral form of 
Ampere’s law. For s < R , the bound surface current plays no role and the current 
densities just add to give Kappa times the free current density. Essentially Kappa 
acts as a current “multiplier” inside the material. This multiplier can be 10000 for 
ferromagnetic materials which greatly increases the magnetic field. For s > R, it is 
instructive to separate the enclosed current contributions into free and bound 
currents. Interestingly enough the total enclosed bound current vanishes with the 
surface current just canceling the integrated current density. This was inevitable 
since our expression for B outside the wire did not depend on mu but only on mu_o
and would be the same expression we would get in the absence of bound currents. 
Recall the same thing happens in electrostatics in material.  The total bound charge 
( in the form of rho_b and sigma_b) is zero which is easy to prove by the divergence 
theorem. 



9

9

Boundary conditions

Magnetostatic Boundary 
Conditions

Electrostatic Boundary 
Conditions
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We note similar patterns in the electrostatic and 
magnetostatic boundary conditions.

This slide summarizes some useful boundary conditions for solving magnetostatic
and electrostatic problems involving materials. We have proved some of the 
electrostatic boundary conditions in the Polarize chp. We will prove some of the 
magnetostatic boundary conditions shortly and leave a few for homework. The 1,2 
subscripts refer to being just inside or just outside the medium. The parallel and 
perpendicular are with respect to the medium surface. It is interesting to see how 
the magnetic boundary conditions complement the electric boundary conditions.  
For example, continuity of E-parallel across the boundary contrasts with continuity 
of B-perp. The BC follow from the vanishing of electric curl and the vanishing of the 
magnetic B divergence.  We don’t get E-perp continuity because of surface charge; 
we don’t get B-parallel continuity because of surface currents. The next row makes 
this clear by showing the discontinuity conditions of the auxiliary D and H fields due 
to free (rather than bound) charges or currents. By way of contrast, the physical E 
and B fields have discontinuities related to both bound and free surface charge and 
currents. The next row highlights perils of thinking of the physical E and B fields as 
rescaled versions of the auxiliary D and H fields that we illustrated on the previous 
slide. Although the parallel component of E is continuous across a boundary, the 
parallel component of D is not if there is parallel polarization. Similarly the 
perpendicular components of B are continuous but the perpendicular components of 
H are not if there is perpendicular magnetization.  We conclude by showing 
boundary conditions that apply to the electrical scalar potential or the magnetic 
vector potential.  Here n is the coordinate transverse to the surface. In several 
places you can see how a 1/epsilon factor in an electric BC converts to a mu factor 
in a magnetic BC. 
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Two boundary condition “proofs”
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On the left we give the two BC for the magnetic field on either side of a material. 
The first of these says that B-perp is continuous across the surface.  This follows 
from the fact that there are no magnetic monopoles.  This means that the net 
magnetic charge enclosed in the Gaussian pill box on the surface is zero which 
means the flux through the upper face always cancels the flux on the lower face. 
The second BC implied by the B expression is a discontinuity in the B-parallel 
components due to surface currents – in this case the bound plus the free current 
since B is sensitive to both. The normal out of the surface points along z. The y-axis 
is defined as the direction of the total surface current. The x-components of B are 
continuous since (by definition) the K_tot is in the y direction and hence K_tot does 
not pierce Ampere’s loop in the y-z plane.  The y-component of B does pierce 
Ampere’s loop in the z-x plane creating a discontinuity in Bx. We can write x-hat in 
terms of the cross product of Ktot and the normal n. The right side BC is for the 
magnetic vector potential.  We assume that the boundary at z=0 carries a surface 
curret vec-K which might consist of free as well as bound contributions. The surface 
current will be the source of discontinuity in B or in A.  If we are very close to the 
boundary carrying the surface current, our boundary will look like an infinite current 
sheet. We can thus simply recycle the result we obtained in the magnetostatics
chapter for the vector potential on either side of a current sheet.  Of course there 
may be a slowly varying A contribution representing a continuous B-field which 
implies continuous A derivatives. Here our “normal” coordinate is just z which we 
add in. Since our current sheet expression depends on |z| the z dependence or 
partial A/partial z will change sign going from +z to –z.  Here vec-A2 is for positive z 
and vec-A1 is for –z. We construct these derivatives for the current sheet 
contribution and subtract them to obtain our result. Presumably the partial 
A_continuous / partial z will be continuous across the boundary and thus cancel in 
the difference.
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A’ boundary condition for magnetized cylinder
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As an illustration of the vector potential derivative discontinuity boundary condition, 
we consider the infinite magnetized cylinder aligned on the z-axis. Here the bound 
surface current is in the M_0 phi-hat direction. We work in cylindrical coordinates. 
We compute the vector potential using the flux method both inside and outside the 
cylinder radius R and get expressions for A(s>R) and A(s<R).  We can verify from 
these forms that A is continuous at the boundary s = R. Our A derivative 
discontinuity condition is only valid if we are in the Coulomb gauge ( or the gauge 
where the divergence of A vanishes), but this is the case for our A expressions 
since there is no derivative in the direction of the field (eg no phi dependence for 
A_phi). The normal direction for the cylinder is the s direction. So we take 
derivatives of our A expressions with respect to s and evaluate these derivatives at 
s=R. The difference of the derivatives is the negative of mu_0 M_0 phi-hat which is 
the negative of –mu_0 times the surface current which confirms our A – slope 
discontinuity boundary condition.
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A Boundary Conditions for Spinning Sphere
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To flesh out our discussion of the BC, we illustrate the vector potential BC for the 
case of the spinning ball of charge. We being by reviewing the A-solutions for inside 
and outside the sphere. The first thing we should check is continuity of the vector 
potential itself.  Although surface currents create a discontinuity in the derivative of 
A – A itself is continuous. The same comment applies to the electric scalar potential 
V. Here we just put r=R and show A1(r=R) = A2(r=R).
We next check the derivative discontinuity BC for A. Here the normal vector is just r-
hat which points radially outwards. The derivative discontinuity is proportional to the 
total surface current – in this case K is free current, while in the magnetized sphere 
it is a bound current. Both the vector potential and the surface current is in the phi 
direction. We begin by casting omega cross r in terms of r and theta. Here r is radial 
distance to the point at which we are evaluating A. We next take the derivatives of 
A1 and A2 with respect to r and take the derivative difference evaluated on the 
surface (r = R).  Indeed we find the derivative discontinuity is given by the BC and is 
essentially the negative of the surface current. 
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Lets also check the magnetized sphere

ẑ η̂
0 ˆ=

G
M M z

θ

R

( )

( )

1

4

2 2

0

0

4

03

ˆsin  

ˆsin

 then:

ˆsin  

ˆs

 

in  

RA r

RA
r

R
RA r R M r

RA r

M

R M
r

μ σω
θ φ

μ σω
θ φ

σ ω
μ

θ φ

μ σ
θ φ

0

0

0

0

=
3

=
3

→

< =
3

> =
3

G

G

G G

G G

ˆˆ siˆ nθ φ× =rz

x̂
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Not surprisingly the vector potential derivative discontinuity also works for the 
uniformly magnetized sphere. We borrow the expressions for A1 and A2 and 
replace sigma omega R with M0.  We can also apply the same substitution to the 
derivative difference for the spinning ball of charge. If the BC holds we have an 
expected form for the surface current K.
Indeed this is the same surface current obtained from M cross r-hat.
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A gapped magnet
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Here is a practical application of magnetostatics. It is an idealized version of a 
gapped, conventional analysis magnet. In my business – experimental high energy 
physics – these magnets are used to reconstruct the momentum of subatomic
particles created at accelerators by measuring their bends through the magnetic 
field (typically about ½ Tesla). To get to such large B-fields we use ferromagnetic 
materials such as steel which we model as a material with a large kappa_m = 
mu/mu_0 ratio. It is crucial that we include an air gap to avoid having the subatomic 
particles scattering in the magnet steel. We calculate the magnetic field using 
Ampere’s law for H around a loop passing through the center of the toroidal magnet. 
The current enclosed by the loop is given by the amp-turns or the current carried by 
the wire times the number of turns wound around the magnet. We next write the H-
line integral in terms of the the B-field we wish to calculate. If the gap is small 
compared to the radius we get a line integral of B/mu while in the steel with a path 
of essentially 2 pi R and a gap (g) contribution of B/mu_o . For a small gap, the B-
field in the gap should very close to the B-field in the magnet steel because of B-
perp continuity. We can solve for the B-field and write the B field for the gapped 
magnet in terms of the B-field we would get if the magnet steel was continuous with 
no gap.  The ratio depends on kappa_m and the gap fraction of the magnet. Good 
ferromagnets can have kappa_m in excess of 10,000. This means if the gap length 
is only 1% of the full Amperian loop, the B-field of the magnet will be 100 times 
smaller than that of an ungapped magnet running the same amp-turns. Since the 
subatomic particles in high energy physics have considerable momenta, a large B-
field is required to get a well measured deflection hence a very large number of 
amp-turns is required.  
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Superconductor levitation
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With the advent of high Tc superconductors, one can get superconduction with liquid nitrogen and 
can demonstrate superconductor properties in a science kit made for children.  One demonstration 
which you may have seen is superconductor magnetic levitation.  The same principle on a larger 
scale can be used to levitate trains! Levitation is based on the Meissner effect which says that a 
superconductor creates surface currents to expel all of the B-field from the superconductor volume. 
These are actual free currents but I think I can model them by the same surface currents present in 
the spinning charge ball which are the same as those created by a uniform magnetization in a 
superconducting sphere. In the magnetized sphere, the M-vector creates a B-field given by 2/3 mu_0 
times the magnetization M. To get the Meissner effect superconductor creates a magnetization that 
exactly cancels the applied B-field and hence no magnetic field exists in the sphere. The total 
magnetic moment of the sphere will be this magnetization times the volume. The total dipole moment 
can then interact with the external magnetic field which induced the dipole moment. The force will be 
proportional to the gradient of the dipole potential energy.  Let us assume that the external field is 
provided by a conventional magnet placed below the sphere. Since the dipole moment opposes this 
external field we get a minus sign for the force. Since the external field will die off as a function of the 
height z, the derivative of the external field is negative which means the force points up and can 
balance the weight of the sphere. Both the weight and total magnetic dipole moment are proportional 
to the sphere volume so the levitation condition should be independent of the sphere size.  We can 
use either a north or south pole for the external field since the levitation condition is proportional to B 
times dB/dz so it is independent of the sign of B. The sphere will raise to a height related to the 
gradient. 
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Hysteresis 

Ferromagnets have a  non-linear M versus H curve
indicating a complicated magnetization mechanism.
The curve is not even reproducable but depends on 
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his example, as we raise H from 0, M reaches saturation.
The saturated M remains as H is lowered to 0.
If one makes a new cycle the M versus H curve changes.
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The very high  and hysteresis is due to domain 
formation. Domains are pieces of the material
with locally parallel magnetizations. 
The "best" ferromagnets are often not iron.

μ

Ferromagnetic materials are highly non-linear and exhibit an important phenomena 
called hysteresis.  The main idea is that there is no universal M versus B curve for 
ferromagnetic materials but M versus B depends on exactly how the material is 
energized and its past history. The illustrated curve shows hysteresis as well as 
magnetic saturation. At some point all the relevant dipoles in a ferromagnet are 
aligned and one sees no increase in M with increasing H (eg more current). The 
physics behind ferromagnetism is complicated. The basic idea is the formation of 
magnetic domains when the magnetic moments within a domain are highly 
correlated. Hysteresis is technologically important since it leads to permanent 
magnets and was used in early magnetic memory devices for computers. High field 
permanent magnets are often not made of iron.  One example is alnico magnets 
made of aluminum, nickel and cobalt. 


