
Extra Midterm 1 Review Problems

- 1. Consider two infinitely long, charged cylinders with central axes parallel to the z direction. Both cylinders have a radius R. Their centers are offset by a vector \vec{d} in the x-y plane of the paper as shown. The left cylinder has a uniform charge density of $+\rho_0$ and the right cylinder has a uniform charge density of $-\rho_0$.
 - a. Find the magnitude of the electrical field on the central axis of the negative cylinder assuming $\left|\vec{d}\right| > R$ as shown.
 - b. Find the electrical field in the overlap region in terms of ρ , R, and \vec{d} . Hint -- This problem is similar to the overlapping sphere home work. Ans. $\vec{E} = \frac{\rho_0 \ \vec{d}}{2\varepsilon_0}$
- 2. Consider an arbitrary, cylindrically symmetric charge distribution of the form $\rho(s)$. Assume the cylinder is very long so there is no z or ϕ dependence.
 - a. Use Gauss's law to find the electrical field as function of s in terms of an integral over $\rho(s)$.
 - b. Check your expression for E using $\varepsilon_0 \vec{\nabla} \cdot \vec{E} = \rho$. This statement of the Fundamental Theorem of Calculus might be helpful: $\frac{\partial}{\partial x} \int\limits_{\text{const}}^x f(x') \, dx' = f(x)$
 - c. Use your expression for E to obtain a double integral expression for V(s) in the region s < b where s = b is the zero for the potential. Ans. $V(s) = -\frac{1}{\varepsilon_0} \int_0^s \frac{ds'}{s'} \int_0^{s'} s'' \rho(s'') ds''$
 - d. Check your answer to part c. by showing that V(s) satisfies $\nabla^2 V = -\rho / \varepsilon_0$.