Physics 435: Grading

11 Home Work: 30%

Discussion Section: 5% attendance

3 Midterms: 30%

Final: 35%

Jim Wiss Office Hours Thursdays and Tuesdays 6:30pm to 8:00 pm. Times posted in Schedule. Room to be announced by email. (jew@illinois.edu)

Home Work due Friday in HW box

Friday < 5pm => 100% credit Monday < 5pm => 90% credit Thursday < 11 pm => 70% credit I have heavily weighted the homework since it's the only way of learning E&M at this level.

Mid Terms (in class):

Fri Feb. 28

Fri Mar. 21

Fri May 2

I hope lecture notes will be available at

T.I.S Bookstore 707 S. 6th St. Champaign

http://courses.physics.illinois.edu/phys435/sp2014/

If you click on our home page ...

Welcome to UIUC Physics 435

Electromagnetic Fields and Sources I

Spring 2014

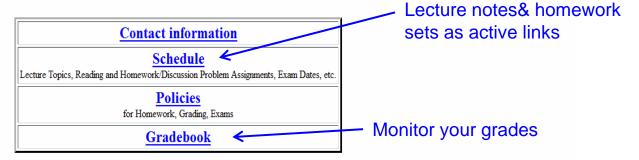


Table of Gradient, Divergence, Curl, Laplacean in different coordinate systems

Announcements:

Our text is D. J. Griffiths, Introduction to Electrodynamics (3rd edition) Most students buy my lecture notes at T.I.S. 707 S. 6th Street Champaign

Grade disputes must be resolved before last class!

I will typically hold Office Hours on Thursdays from 6:30-7:50 pm in 218 Ceramics Building which is across (on west side) of Loomis to discuss homework or exam preparation.

Schedule

Мо	Tu	We	Th	Fr]{}	
1/20/2014	1/21/2014	1/22/2014	1/23/2014	1/24/2014		These slides
		<u>1</u>	readings	<u>2</u> K	welcome	
		GL-1	skim chp 1	GL-2	#	
		Intro	2.2	E-field		
		R Ch1		R2.1		GL Lectures
Мо	Tu	We	Th	Fr	[{{	
1/27/2014	1/28/2014	1/29/2014	1/30/2014	1/31/2014		
<u>3</u>		<u>4</u>	readings	<u>5</u>		
GL-3		GL-4	2.2, 2.2.4	GL-5	Ш	
Gauss Law		Divergence		Divergence	hw1-sol	F7 (1 DA)
			ОН	HW1 due GL1←		First HW
Мо	Tu	We	Th	Fr	<u> </u>	due on 1/31
2/3/2014	2/4/2014	2/5/2014	2/6/2014	2/7/2014		
<u>6</u>		<u>7</u>	readings	<u>8</u>		
Pot-1		Pot-2	2.2.4	Pot-3		Solutions ~1
gradient		work&energy		Stokes 1		week after due
<u>D1</u>			ОН	HW2 due GL2	hw2-sol	week after due
Мо	Tu	We	Th	Fr	[{{	
2/10/2014	2/11/2014	2/12/2014	2/13/2014	2/14/2014		
<u>9</u>		<u>10</u>	readings	<u>11</u>		
Pot-4		Pot-5	2.3	Pot-6		
Stokes 2		E-field energy		E-field energy		
<u>D2</u>			ОН	HW3 due Pot1	hw3-sol	
Мо	Tu	We	Th	Fr	1 {}	

Welcome to Physics 435!

You saw 3 of 4 Maxwell Eqn in Physics 212

Gauss's Law :
$$\varepsilon_0 \int \vec{E} \cdot d\vec{a} = Q_{encl}$$

Faraday's Law:
$$\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = \frac{d}{dt} \int \vec{B} \cdot d\vec{a}$$

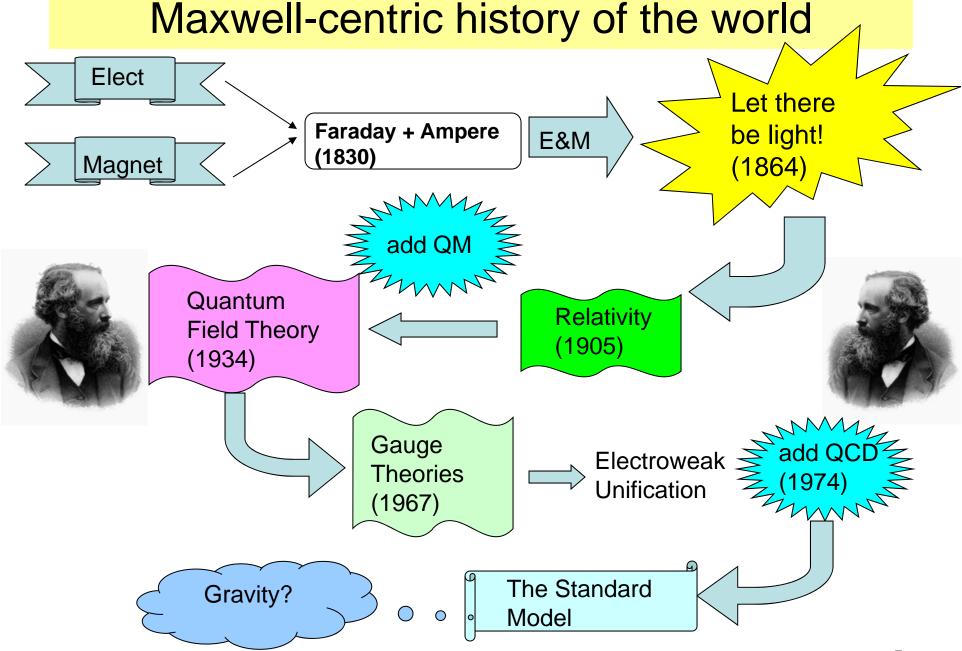
Ampere-Maxwell
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \left(I + \varepsilon_0 \frac{d}{dt} \left[\int \vec{E} \cdot d\vec{a} \right] \right)$$

So why study E&M further?

Great applications of crucial mathematics:

- a) Vector Calculus
- b) Orthogonal functions
- c) Curvilinear coordinate systems

Physics beyond Phys 212


- a) Differential form of Maxwell Eq,
- b) E&M in materials : Bound charge & currents
- c) Vector Potentials in Mech and Quant Mech
- d) Wave guides
- e) Radiation theory
- f) Relativistic transformations of E&M fields

E&M is the most practical branch of classical physics

It is correct as originally written by Maxwell in 1864:

- a) Relativistically
- b) Quantum mechanically

E&M forms theoretical template for the successful gauge theory strong & weak interactions or the Standard Model.

