Make a donation to Wikipedia and give the gift of knowledge!

Del in cylindrical and spherical coordinates

From Wikipedia, the free encyclopedia (Redirected from Nabla in cylindrical and spherical coordinates)

This is a list of some vector calculus formulae of general use in working with standard coordinate systems.

Table with the del operator in cylindrical and spherical coordinates

Operation	Cartesian coordinates (x,y,z)	Cylindrical coordinates (ρ,φ,z)	Spherical coordinates (r,θ,φ)
Definition of coordinates		$\begin{bmatrix} x = \rho \cos \phi \\ y = \rho \sin \phi \\ z = z \end{bmatrix}.$ $\boxed{\left[\rho = \sqrt{x^2 + y^2}\right]}$	$\begin{bmatrix} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \\ z = r \cos \theta \end{bmatrix}.$ $\begin{bmatrix} r = \sqrt{x^2 + y^2 + z^2} \end{bmatrix}$
			$egin{array}{rl} heta &=& rccos(z/r) = rctan(\sqrt{x^2+y^2}/z) \ \phi &=& rctan(y/x) \end{array} ight.$
A vector field A	$A_x \hat{\mathbf{x}} + A_y \hat{\mathbf{y}} + A_z \hat{\mathbf{z}}$	$A_{ ho}\hat{ ho} + A_{\phi}\hat{\phi} + A_z\hat{z}$	$A_r \hat{oldsymbol{r}} + A_ heta \hat{oldsymbol{ heta}} + A_\phi \hat{oldsymbol{\phi}}$
Gradient $ abla f$	$\frac{\partial f}{\partial x}\mathbf{\hat{x}} + \frac{\partial f}{\partial y}\mathbf{\hat{y}} + \frac{\partial f}{\partial z}\mathbf{\hat{z}}$	$rac{\partial f}{\partial ho} \hat{oldsymbol{ ho}} + rac{1}{ ho} rac{\partial f}{\partial \phi} \hat{oldsymbol{ ho}} + rac{\partial f}{\partial z} \hat{oldsymbol{z}}$	$rac{\partial f}{\partial r} \hat{m{r}} + rac{1}{r} rac{\partial f}{\partial heta} \hat{m{ heta}} + rac{1}{r\sin heta} rac{\partial f}{\partial \phi} \hat{m{\phi}}$
$\begin{array}{c} \textbf{Divergence} \\ \nabla \cdot \mathbf{A} \end{array}$	$\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$	$\frac{1}{\rho} \frac{\partial \left(\rho A_{\rho}\right)}{\partial \rho} + \frac{1}{\rho} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}$	$\frac{1}{r^2}\frac{\partial\left(r^2A_r\right)}{\partial r} + \frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}\left(A_\theta\sin\theta\right) + \frac{1}{r\sin\theta}\frac{\partial A_\phi}{\partial\phi}$
Curl $ abla imes \mathbf{A}$	$ \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \end{pmatrix} \hat{\mathbf{x}} + \\ \begin{pmatrix} \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \end{pmatrix} \hat{\mathbf{y}} + \\ \begin{pmatrix} \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \end{pmatrix} \hat{\mathbf{z}} $	$ \begin{pmatrix} \frac{1}{\rho} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z} \end{pmatrix} \hat{\boldsymbol{\rho}} & + \\ \begin{pmatrix} \frac{\partial A_\rho}{\partial z} - \frac{\partial A_z}{\partial \rho} \end{pmatrix} \hat{\boldsymbol{\phi}} & + \\ \frac{1}{\rho} \begin{pmatrix} \frac{\partial (\rho A_\phi)}{\partial \rho} - \frac{\partial A_\rho}{\partial \phi} \end{pmatrix} \hat{\boldsymbol{z}} \end{cases} $	$ \frac{1}{r\sin\theta} \left(\frac{\partial}{\partial\theta} (A_{\phi}\sin\theta) - \frac{\partial A_{\theta}}{\partial\phi} \right) \hat{\boldsymbol{r}} + \frac{1}{r} \left(\frac{1}{\sin\theta} \frac{\partial A_{r}}{\partial\phi} - \frac{\partial}{\partial r} (rA_{\phi}) \right) \hat{\boldsymbol{\theta}} + \frac{1}{r} \left(\frac{\partial}{\partial r} (rA_{\theta}) - \frac{\partial A_{r}}{\partial\theta} \right) \hat{\boldsymbol{\phi}} $
Laplace operator $\Delta f = \nabla^2 f$	$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$	$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial f}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2 f}{\partial\phi^2} + \frac{\partial^2 f}{\partial z^2}$	$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial\phi^2}$ or $\frac{1}{r}\frac{\partial^2}{\partial r^2}(rf) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial\phi^2}$
$\Delta \mathbf{A} = \nabla^2 \mathbf{A}$	$\Delta A_x \hat{\mathbf{x}} + \Delta A_y \hat{\mathbf{y}} + \Delta A_z \hat{\mathbf{z}}$	$ \begin{pmatrix} \Delta A_{\rho} - \frac{A_{\rho}}{\rho^2} - \frac{2}{\rho^2} \frac{\partial A_{\phi}}{\partial \phi} \end{pmatrix} \hat{\boldsymbol{\rho}} &+ \\ \begin{pmatrix} \Delta A_{\phi} - \frac{A_{\phi}}{\rho^2} + \frac{2}{\rho^2} \frac{\partial A_{\rho}}{\partial \phi} \end{pmatrix} \hat{\boldsymbol{\phi}} &+ \\ & (\Delta A_z) \hat{\boldsymbol{z}} \end{pmatrix} $	$ \begin{pmatrix} \Delta A_r - \frac{2A_r}{r^2} - \frac{2}{r^2 \sin \theta} \frac{\partial (A_\theta \sin \theta)}{\partial \theta} - \frac{2}{r^2 \sin \theta} \frac{\partial A_\phi}{\partial \phi} \end{pmatrix} \hat{\boldsymbol{r}} + \\ \begin{pmatrix} \Delta A_\theta - \frac{A_\theta}{r^2 \sin^2 \theta} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\phi}{\partial \phi} \end{pmatrix} \hat{\boldsymbol{\theta}} + \\ \begin{pmatrix} \Delta A_\phi - \frac{A_\phi}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin^2 \theta} \frac{\partial A_r}{\partial \phi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\theta}{\partial \phi} \end{pmatrix} \hat{\boldsymbol{\phi}} \end{cases} $
Differential displacement	$d\mathbf{l} = dx\hat{\mathbf{x}} + dy\hat{\mathbf{y}} + dz\hat{\mathbf{z}}$	$d\mathbf{l} = d\rho\hat{\boldsymbol{\rho}} + \rho d\phi\hat{\boldsymbol{\phi}} + dz\hat{\boldsymbol{z}}$	$d\mathbf{l} = dr\hat{\mathbf{r}} + rd\theta\hat{\boldsymbol{\theta}} + r\sin\theta d\phi\hat{\boldsymbol{\phi}}$
Differential normal area	$d\mathbf{S} = \begin{array}{c} dy dz \hat{\mathbf{x}} + \\ dx dz \hat{\mathbf{y}} + \\ dx dy \hat{\mathbf{z}} \end{array}$	$egin{array}{lll} d{f S} = & ho d\phi dz {f \hat ho} + \ & d ho dz {f \hat ho} + \ & ho d ho dz {f \hat ho} + \ & ho d ho d\phi {f \hat z} \end{array}$	$d\mathbf{S} = r^2 \sin heta d heta d \phi \hat{\mathbf{r}} + r \sin heta d r d \phi \hat{m{ heta}} + r d r d heta \hat{m{ heta}}$
Differential volume	dv = dxdydz	$dv = \rho d\rho d\phi dz$	$dv = r^2 \sin \theta dr d\theta d\phi$

Non-trivial calculation rules:

1. div grad $f = \nabla \cdot (\nabla f) = \nabla^2 f = \Delta f$ (Laplacian)

2. curl grad
$$f = \nabla \times (\nabla f) = 0$$

- 3. div curl $\mathbf{A} = \nabla \cdot (\nabla \times \mathbf{A}) = 0$
- 4. curl curl $\mathbf{A} = \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) \nabla^2 \mathbf{A}$ (using Lagrange's formula for the cross product) 5. $\Delta fg = f \Delta g + 2\nabla f \cdot \nabla g + g \Delta f$

Remarks

Del in cylindrical and spherical coordinates - Wikipedia, the free encycl...

- This page uses standard physics notation; some (American mathematics) sources define φ as the angle from the z-axis instead of θ.
- The function atan2(y, x) is used instead of the mathematical function arctan(y/x) due to its domain and image. The classical arctan(y/x) has an image of $(-\pi/2, +\pi/2)$, whereas atan2(y, x) is defined to have an image of $(-\pi, \pi]$.

See also

- Orthogonal coordinates
- Curvilinear coordinates
- Vector fields in cylindrical and spherical coordinates

Retrieved from "http://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates"

Categories: Vector calculus | Coordinate systems

- This page was last modified 11:17, 11 October 2007.
- All text is available under the terms of the GNU Free Documentation License. (See **Copyrights** for details.)
- Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax-deductible nonprofit charity.