Additional Final Study Problems

1) Consider a square wave guide designed to propagate electromagnetic waves along the z-axis. The cross section of the wave guide is a square of side a. The magnetic field inside the wave guide only oscillates along the $\pm \hat{y}$ direction.

Recall you can easily find \vec{E} from \vec{B} using $\vec{\nabla} \times \vec{B} = \frac{1}{c^2} \partial_t \vec{E}$.

(a) Write down the general (wave guide) form for B_y which is consistent with the perfect conductor \vec{B} and \vec{E} boundary conditions. Recall the wave guide solutions depend on two integers: m (related to the x dependence), and n (related to the y dependence). Let B_0 be the amplitude of the B_y oscillation.

ans:
$$\vec{B} = \hat{y}B_0 \cos \frac{m\pi x}{a} \sin \frac{n\pi y}{a} \tilde{e}$$

(b) Find the m and n values corresponding to the B_y with the lowest $\omega_{\rm cutoff}$. Find this cut-off frequency in terms of a.

Assume we are in the lowest cut-off mode for what follows and answer all questions in terms of in terms of k, ω , a, B_0 and physical constants.

- (c) Find expressions for the surface current \vec{K} on each of the four walls
- (d) Find the charge density (σ) on each of the four walls
- (e) Show your \vec{K} and σ satisfy $\vec{\nabla} \bullet \vec{K} + \partial_t \sigma = 0$ on each of the four walls.
- (f) Calculate the time averaged power carried in the wave guide. Is any power carried at the cut-off frequency? ans: $\langle \mathcal{P} \rangle = \frac{kc^2B_0^2a^2}{4\mu_0\omega}$

- 2) Consider a surface (such as a sphere or cylinder) with a local surface current plane which creates a discontinuity for a static B-field in the \hat{z} direction. Let's put the normal of the local current plane in the \hat{x} direction, the direction of the local surface current in the \hat{y} direction, and the center of the local current plane at x = y = z = 0.
 - (a) Find the pressure acting in the \hat{x} direction due to the surface current in terms of the z component of the magnetic field just below (^-B_z) and just above (^+B_z) the current plane using the Maxwell stress tensor. What is the bounding surface that you must use to compute this pressure?

ans: press_x =
$$-\frac{{}^{+}B_{z}^{2} - {}^{-}B_{z}^{2}}{2\mu_{0}}$$

(b) Show that the pressure you computed in (a) is given by $\hat{x} \cdot \vec{K} \times \vec{B}_{\text{ave}}$ where

$$\vec{B}_{\text{ave}} = \frac{{}^{+}B_{z} + {}^{-}B_{z}}{2}\hat{z}. \text{ Write } \vec{K} \text{ in terms of } {}^{+}B_{z} \text{ and } {}^{-}B_{z}. \boxed{\text{ans: } \vec{K} = -\frac{\left({}^{+}B_{z} - {}^{-}B_{z}\right)\hat{y}}{\mu_{0}}}$$

- (c) Check your results for (a) and (b) by considering (1) the pressure on a long solenoid of radius R carrying providing $\vec{B}(s < R) = B_0 \hat{z}$ and (2) the pressure on an infinite current plane with x=0 and $\vec{K} = K\hat{y}$.
- 3) A particle has an energy of \mathcal{E} and a velocity of $c\vec{\beta}$ in the lab frame.
- (a) Find \mathcal{E}' which is the energy of the particle in a prime frame traveling with a lab frame velocity of \vec{v} terms of \mathcal{E} , $\vec{\beta}$, \vec{v} and

$$\gamma = 1 / \sqrt{1 - \vec{v} \cdot \vec{v} / c^2}$$
. ans: $\mathcal{E}' = \gamma \mathcal{E} \left(1 - \frac{\vec{\beta} \cdot \vec{v}}{c} \right)$

(b) Find \mathcal{E}' for the case where $\vec{v} = c\vec{\beta}$. Do you understand your answer?