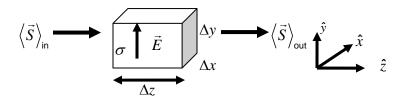
Homework #3

- 1. Consider a plane polarized electromagnetic wave with an electrical field given by $\vec{E} = \hat{x} E_0 \cos(\omega t kz)$.
- (a) Find the associated magnetic field
- (b) Find the energy density $u_{em}(z,t) = \frac{\varepsilon_0 \vec{E} \cdot \vec{E}}{2} + \frac{\vec{B} \cdot \vec{B}}{2\mu_0}$
- (c) Find the Poynting vector $\vec{S}(z,t)$. Do not average over time.
- (d) Use your answers for (b) and (c) to show $\vec{\nabla} \cdot \vec{S} + \frac{\partial u_{em}}{\partial t} = 0$
- (e) Use your answer for (c) and relations such as $\langle \cos^2 \omega t \rangle = \frac{1}{2}$ etc to show

 $\left\langle \vec{S} \right\rangle = \frac{E_0^2}{2 \mu_0 c} \, \hat{z} \approx \frac{E_0^2 \hat{z}}{2 \times 377 \, \text{Ohms}} \quad \text{To get full credit be sure to demonstrate that} \quad \mu_0 c$ has the units of impedance or Ohms and be careful to show $\left\langle \cos^2 \omega t - kz \right\rangle = \frac{1}{2} \quad \text{independent of z}$

- (f) Show you get the same result for $\left\langle \vec{S} \right\rangle$ as in part (e) using complex notation: $\vec{E} = \hat{x}E_0 \exp\left(ikz i\omega t\right)$ and $\left\langle \vec{S} \right\rangle = \frac{1}{2\mu_0} \operatorname{Re}\left\{\vec{E}^* \times \vec{B}\right\}$. Assume E_0 is real. Begin by computing the complex \vec{B} using Faraday' law assuming $\vec{B} \propto \exp\left(-i\omega t\right)$. What is $\vec{\nabla} \cdot \left\langle \vec{S} \right\rangle$? Is your $\vec{\nabla} \cdot \left\langle \vec{S} \right\rangle$ equal to $\vec{\nabla} \cdot \vec{S}$ of part (d)?
- 2. Griffiths problem 9.12 . Use the time averaged $\left\langle \ddot{T} \right\rangle$ throughout.
- 3. Consider an electromagnetic wave with a time-averaged $\langle \vec{S} \rangle$ along the \hat{z} direction. Assume this wave passes through an infinitesimal, conducting volume with conductivity σ , and dimensions $\Delta x, \Delta y, \Delta z$. Assume that the wave's electrical field while in the volume is given by $\vec{E} \propto \hat{y}$ as shown below:



- (a) Write the total time-averaged power flowing into the volume in terms of $\left\langle \vec{S}_{\text{in}} \right\rangle_{\text{z}}$, $\left\langle \vec{S}_{\text{out}} \right\rangle_{\text{z}}$, and $\Delta x \ \Delta y$ as shown above.
- (b) The time-averaged. power dissipated in heat within the volume is presumably: $\langle I^2 \rangle R$. Write the average power dissipated in heat in terms of the field within the volume \vec{E} , the conductivity σ , and the volume dimensions $\Delta x, \Delta y, \Delta z$. Hints You can find I from $\vec{J} = \sigma \vec{E}$ and the resistance R can be computed from σ and the dimensions $\Delta x, \Delta y, \Delta z$
- (c) By setting the time-averaged power flowing into volume that you computed in part (a) to the heat dissipated power that you computed in part (b) show that : $\vec{\nabla} \cdot \left\langle \vec{S} \right\rangle + \left\langle \vec{E} \cdot \vec{J} \right\rangle = 0 \text{ which is the time-averaged version of Poynting's theorem.}$ Hint-- $\left[\left\langle \vec{S}_{\text{in}} \right\rangle_z \left\langle \vec{S}_{\text{out}} \right\rangle_z \right] \propto \partial \left\langle S \right\rangle_z / \partial z \text{ in the infinitesimal limit.}$
- 4. A superposition of two electromagnetic waves traveling in vacuum has an electric field of the form $\vec{E} = E_0 \hat{z} \, e^{ikx-i\omega t} + E_0 \hat{z} \, e^{iky-i\omega t}$. For simplicity assume E_0 is real.
- (a) Find the associated magnetic field using Faraday's law.
- (b) Construct the time-averaged Poynting vector using $\langle \vec{S} \rangle = \frac{\text{Re} \{\vec{E}^* \times \vec{B}\}}{2\mu_0}$
- (c) Compute the time-averaged intensity $I = \left| \left\langle \vec{S} \right\rangle \right|$. Write the maximum possible intensity in terms of E_0 . Crudely sketch I(x,y=0,z=0) and I(x=y,z=0) as a function of x. These are the intensities on the x axis and on the x=y line.
- (d) Find $\vec{\nabla} \cdot \left< \vec{S} \right>$ using your answer to part (b). Did you get what you expect from Poynting's Theorem?