Lecture 2 - Structure of crystals

Solid State Physics 460- Lecture 2 Structure of Crystals (Kittel Ch. 1)

See many great sites like "Bob's rock shop" with pictures and crystallography information on the web at www.rockhounds.com/rockshop/xtal/index.htm

Crystals

- A crystal is a repeated array of atoms
- Examples

- ○ ○ ○	$0 \cdot 0 \cdot 0 \cdot 0$
00000	$00^{\circ} 000$
- 0000	$00^{0} 000$
- ○ ○ ○	$00^{\circ} 0^{\circ} 0^{\circ}$
Array of atoms Each atom is identical	Array of atoms Two types of atoms
	Physics 460 F 2006 Lect 2

Two Dimensional Crystals

Two Dimensional Crystals

- Infinite number of possible crystals
- Finite number of possible crystal types

Lecture 2 - Structure of crystals

Lattices and Translations

- The entire infinite lattice is specified by 2 primitive vectors a_{1} and a_{2} (also a_{3} in 3-d)
- $T\left(n_{1}, n_{2}, \ldots\right)=n_{1} a_{1}+n_{2} a_{2}\left(+n_{3} a_{3}\right.$ in 3-d), where the n 's are integers
- Note: the primitive vectors are not unique different vectors a_{1} and a_{2} can define the same lattice

Physics 460 F 2006 Lect 2

Two Dimensional Lattices Primitive Cell and Wigner-Seitz Cell

- All primitive cells have same area (volume)
- Wigner Seitz Cell is most compact, highest symmetry cell possible
- Also same rules in $\mathbf{3}$ dimensions

Possible Two Dimensional Lattices

Special angles $\phi=90$ and 60 degrees lead to special crystal types

- In addition to translations, the lattice is invariant under rotations and/or reflections

Possible Two Dimensional Lattices

- These are the only possible special crystal types in two dimensions

More on Two Dimensional Lattices

- Why is it imposible to have a crystal with a five-fold rotation symmetry?
- Why is the centered square not a special type?

Lecture 2 - Structure of crystals

Classification of Crystal Structures

- Crystal structures classified by:
- Translation symmetry
- Only the Bravais lattice
- Limited number of possible Bravais lattice types
- Rotation, Inversion, reflection symmetry
- Depends upon basis
- Limited number of possible crystal types
- Examples in 2 dimensions
- (3 dimensions later)
- See Kittel for lists of possible translation types.
- See other crystallography references for lists of all possible crystal types

Summary at this point

- A crystal is a repeated array of atoms
- Crystal \Leftrightarrow Lattice $\quad+$ Basis

○ ○ ○ ○ ○
00000
$\begin{array}{lllll}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}$
00000

- • . .
${ }^{\circ}{ }^{\circ}$
Lattice of points
(Bravais Lattice) Basis of atoms
- Crystals can be classified into a small number of types - See text for more details Physics 460 F 2006 Lect 2

Next Time

- More on Crystal Lattices - Continue Kittel, Ch. 1
- 3 Dimensions
- Lattice planes
- Examples of crystals

