Lecture 2a-Structure of crystals - continued

Solid State Physics 460- Lecture 2a Structure of Crystals

 (Kittel Ch. 1)

See many great sites like "Bob's rock shop" with pictures and crystallography info: http://www.rockhounds.com/rockshop/xtal/index.html

From Last Time		stal		
- A crystal is a repeated array of atoms				
- Crystal \Leftrightarrow Lattice + Basis				
$\bigcirc \bigcirc \bigcirc \bigcirc$				
$\bigcirc \circ \bigcirc \circ$ ○				
$\bigcirc \circ \bigcirc \bigcirc 000 \cdot \cdots$				
- ○ ○ ○				
$0^{\circ} 0^{\circ} 0^{\circ}$.				
$0^{\circ} 0^{\circ} 0^{\circ} \cdot \cdots \cdot \cdots \cdot$				
-				
- Lattice of points				
Crystal (Bravais Lattice) B				
- Crystals can be classified into a small number of types - See text for more details				

- These are the only possible special crystal types in two dimensions

- Orthorhombic: angles 90 degrees, 3 lengths different Tetragonal: 2 lengths same Cubic: 3 lengths same
- Hexagonal: a_{3} different from a_{1}, a_{2} by symmetry

Lecture 2a-Structure of crystals - continued

Lecture 2a-Structure of crystals - continued

Lattice Planes - Index System

- Define the plane by the reciprocals $1 / \mathrm{s}_{1}, 1 / \mathrm{s}_{2}, 1 / \mathrm{s}_{3}$
- Reduce to three integers with same ratio h, k, l
- Plane is defined by (h,k,l)

- Equivalent parallel planes
- Low index planes: more dense, more widely spaced
- High index planes: less dense, more closely spaced

Physics 460 F 2006 Lect 2a

Schematic illustrations of lattice planes Lines in 2d crystals

- Planes "slice through" the basis of physical atoms
(111) lattice planes in cubic crystals

Face Centered Cubic Lattice Lattice planes perpendicular to [111] direction Each plane is hexagonal close packed array of points

Physics 460 F 2006 Lect 2a

Lecture 2a-Structure of crystals - continued

Stacking hexagonal 2d layers to make

 close packed 3-d crystal

- Each sphere has 12 equal neighbors
- 6 in plane, 3 above, 3 below
- Close packing for spheres
- Can stack each layer in one of two ways, B or C above A
- Also see figure in Kittel ${ }^{\text {Physics } 460 \text { F } 2006}$ Lect 2a

Hexagonal close packed

Hexagonal Bravais Lattice Two atoms per cell

Stacking hexagonal 2d layers to make hexagonal close packed (hcp) 3-d crystal

- Each sphere has 12 equal neighbors
- Close packing for spheres
- See figure in Kittel for stacking sequence
- HCP is ABABAB..... Stacking
- Basis of 2 atoms Physics 460 F 2006 Lect 2a

Stacking hexagonal 2d layers to make cubic close packed (ccp) 3-d crystal

- Each sphere has 12 equal neighbors
- Close packing for spheres
- See figure in Kittel for stacking sequence
- CCP is ABCABCABC..... Stacking
- Basis of 1 atom

Physics 460 F 2006 Lect 2a

Recall from
before Face Centered Cubic (fcc) Also called cubic closed packed (сср)

Each atom has 12 equal neighbors
The figure at the right shows the face centered character
Physics 460 F 2006 Lect 2a

Lecture 2a-Structure of crystals - continued

More on stacking hexagonal 2d layers

- Infinite number of ways to stack planes
- Polytypes occur in some metals, some compounds like silicon carbide (SiC)

Atomic planes in NaCl and ZnS crystals
 rows of the Na and Cl atoms

(110) plane in ZnS crystal zig-zag Zn-S chains of atoms

Physics 460 F 2006 Lect 2a

Lecture 2a-Structure of crystals - continued

Is a crystal really different from a liquid?

Liquid $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

Crystal
Yes - the crystal has "order" - different directions are different
Other crucial differences?
Yes - dislocations

of atoms on the left

- The dislocation can move but Crystal with a "dislocation" it cannot disappear!

Important for deformations, ... See Kittel Ch. 20 Physics 460 F 2006 Lect 2a
(111) planes in ZnS crystals

Note: ABAB... stacking gives hexagonal ZnS
Physics 460 F 2006 Lect 2a

Symmetries of crystals in 3 dimensions

- All Crystals can be classified by:
- 7 Crystal systems (triclinic, monoclinic, orthorhombic, tetragonal, cubic, hexagonal, trigonal)
- 14 Bravais Lattices (primitive, face-centered or body-centered for each system - 14 of the 7x3 possibilities describe all Bravais lattices)
- 32 Points groups (rotations, inversion, reflection)
- See references in Kittel Ch 1, G. Burns, "Solid State Physics"

Next Time

- Diffraction from crystals
- Reciprocal lattice
- Read Kittel Ch 2

