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Solid State Physics 460 - Lecture 3
Diffraction and the Reciprocal Lattice

(Kittel Ch. 2)

Diffraction (Bragg Scattering) from a powder of crystallites - real 
example of image at right  from 
http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html
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Crystals From Previous Lectures

• A crystal is a repeated array of atoms                          
• Crystal   ¤ Lattice   +     Basis

Crystal
Lattice of points
(Bravais Lattice) Basis of atoms

• Crystals can be classified into a small number of 
types – See text for more details
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How can we study crystal structure? 
• Need probe that can penetrate into crystal                 
• X-rays, neutrons, (high energy electrons)

• X-rays discovered by Roentgen in 1895   - instant 
sensation round the world - view of his wife’s hand

• Neutrons (discovered in 1932) penetrate with 
almost no interaction with most materials
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How can we study crystal structure? 
• X-rays scatter from the electrons 

• intensity proportional to the density n(r)  
• Mainly the core electrons around the nucleus

• High energy electrons
• Also mainly core electrons around the nucleus

• Neutrons scatter from the nuclei 
(and electron magnetic moment)

• In all cases the scattering is caused by the nuclei
or the core electrons near the nuclei

• The scattering amplitude is periodic - the same in each cell 
of the crystal 

• Diffraction is the constructive interference of the scattering 
from the very large number of cells of the crystal
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The crystal can be viewed as made up
of planes of atoms

• There are many sets of  parallel planes that can be 
drawn through the crystal

• Low index planes: more dense, more widely spaced
• High index planes: less dense, more closely spaced
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Bragg Scattering Law

• Condition for constructive interference (Diffraction):
2d sin θ = n λ

• Maximum λ = 2d
• Only waves with λ smaller than 2d can satisfy the Bragg 

scattering law for diffraction

• For a typical crystal the maximum d ~ 0.1 – 1 nm, so that
λ < ~ 0.1 – 1 nm

d
θθ

2 d sin θ

λ
λ
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What energy x-rays, neutrons…
are required?

• What energy waves (particles) can satisfy the Bragg 
scattering law for a typical crystal?

λ < 0.1 – 1 nm

X-rays and neutrons at these energies penetrate solids and are useful
for  studies of the bulk material

Electrons of these energies scatter very strongly – they do not penetrate
far and they can be used to study surfaces

From Homework 0:    λ=0.1 nm λ=1.0 nm

X-rays E= 1.24 104 eV E= 1.24 103 eV

Neutron E= 8.16 10-2 eV E= 8.16 10-4 eV

Electron E= 1.50 102 eV E= 1.50 eV
See Fig. 1, Ch. 2 of Kittel for plot of E vs. λ
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Example of scattering  
• Aluminum (Al) is  fcc with 

a = 0.405 nm
• What is minimum energy 

x-ray that can satisfy the 
Bragg condition?

X

y

z

• The largest distance between planes is for 111 planes: 
d = (a √3 )/3 = a /√3

• Maximum λ is 2d = 2 a /√3 = 0.468 nm

• Using  E = hν = hc/λ , (hc = 1.24 x 10-6 m = 1.24 103 nm), the 
minimum energy x-ray for Bragg scattering is 2.65 keV.

• Higher energy x-rays are needed for diffraction from all other 
planes in the crystal
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Why is a powder “better” than a 
single crystal for x-ray diffraction?

•For fixed λ, Bragg condition satisfied only for certain angles θ
•Random powder automatically averages over all angles 
•Diffraction (Bragg Scattering) from a powder of crystallites 
•Example of too few crystallites (left) and better sample (right)
http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

Each ring is a different
plane in the crystal

2θ
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Single crystal diffraction

•Crystal must be oriented in all directions 
in 3D space using “Gonier Spectrometer”

•Observe scattering only at Bragg angles for a fixed
wavelength x-ray or neutrons or ….. 

Rotate both sample and 
detector about axis

2θ
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Alternative approach -
energy dispersive diffraction

•For fixed angle θ , vary the energy (i.e., λ) to satisfy Bragg condition
for a sample (the “experiment”) 
•X-rays over broad energy range now available at synchrotrons like 
the Advanced Photon Source at Argonne 
•Note that diffraction from a single crystallite is also used at the 
monochrometer to select X-rays with desired wavelength 
•See http://www.aps.anl.gov/

electrons

Photons - broad
range of energies

Single crystal
monchrometer

Experiment

Photons with 
selected 
energy

synchrotron
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Periodic Functions and Fourier Analysis
• Any periodic function can be expressed in terms 

of its periodic Fourier components (harmonics).
• Example of density n(x) in 1 D crystal:

n(x) = n0 + Σm>0[Cm cos (2π m x/a) + Sm sin (2π m x/a)]

• Easier expression:
n(x) = Σm nmexp( i 2π p x/a)

(easier because exp( a + b) = exp( a ) exp( b) )

• Expression for Fourier Components:
nm =   ∫

0
a dx n(x) exp( - i 2π m x/a)
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Reciprocal Lattice and 
Fourier Analysis in 1D

• In 1D,  b = 2 π /a
• Periodic function f(x): 

f(x) = Σm fm exp( i 2π m x/a)
= Σm fm exp( i m b x), m = integer

• The set of all integers x b are the reciprocal lattice
a

b

Real Lattice

Recip. Lattice
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Fourier Analysis in 3 dimensions 
• Define vector position r = (x,y,z)        [ r = (x,y) (2D) ]
• Fourier analysis

f(r) = ΣG fG exp( i G . r)  
where the G’s are vectors, i.e., 

exp( i G . r) = exp( i (Gx x + Gy y + Gz z) )
= exp( i Gx x ) exp( i Gy y ) exp( i Gz z)

• A periodic function satisfies 
f(r) =  f(r + T) where T is any translation vector
T(n1,n2,…) = n1 a1 + n2 a2 + n3 a3, integer n’s

• Thus
f(r + T) = ΣG fG exp( i G . r) exp( i G . T) = f(r)
⇒ exp( i G . T) = 1 ⇒ G . T = 2π x integer
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Reciprocal Lattice
• Reciprocal lattice is defined by the vectors

G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3,
where the m’s are integers and

bi
. aj =  2π δij , where  δij = 1,  δij = 0, i ≠ j

• The reciprocal lattice is a set of G vectors that is 
determined by the real space Bravais lattice 

• The only information about the actual basis of 
atoms is in the quantitative values of the Fourier 
components  fG in the Fourier analysis

f(r) = ΣG fG exp( i G . r) 
• Inversion formula:

fG = ∫cell dr f(r) exp(- i G . r)
Physics 460 F 2006  Lect 3 16

Reciprocal Space
• Reciprocal space is the space of Fourier components
• The Fourier transform of a general function g(r):

g(r) = ∫all k dk g(k) exp( i k . r), 
g(k) = (1/2π) ∫all r dr g(r) exp( - i k . r), 

where k = (kx, ky, kz ) where kx, ky, kz are continuous variables 
that  can have any  values.  

• k = (kx, ky, kz ) is a vector in reciprocal space
• Reciprocal space is defined independent of any crystal!

•The reciprocal lattice is the set of Fourier components
G(m1,m2, m3) = m1 b1 + m2 b2 + m3 b3,which are vectors that form a lattice in reciprocal space 

•For a periodic crystal the only non-zero Fourier components 
are for k = G
•For each Bravais lattice in “real space” there is a unique 
reciprocal lattice in reciprocal space. 
•Real lattice:  Set of translations T(n1,n2,…) = n1 a1 + n2 a2 + n3 a3
Reciprocal lattice:  Set of     G(m1,m2, m3) = m1 b1 + m2 b2 + m3 b3
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Real & Reciprocal lattices in 2 D

• For each Bravais lattice, there is a reciprocal lattice
• b1 perpendicular to a2 -- b2 perpendicular to a1

• Wigner-Seitz Cell of Reciprocal lattice called the 
“First Brillouin Zone” or simply “Brillouin Zone”

a1

a2
b2

b1

b2

b1

Wigner-Seitz Cell

Brillouin Zone

a1

a2

Physics 460 F 2006  Lect 3 18

Reciprocal Lattice in 3D

• The primitive vectors of the reciprocal lattice are 
defined by the vectors bi that satisfy   

bi
. aj =  2π δij , where  δij = 1,  δij = 0, i ≠ j

• How to find the b’s?

• Note: b1 is orthogonal to a2 and a3, etc.
• In 3D, this is found by noting that (a2 x a3 ) is 

orthogonal to a2 and a3

• Also volume of primitive cell V = |a1 
. (a2 x a3 )|

• Then bi =  (2π / V ) (aj x ak ), where i ≠ j ≠ k
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Three Dimensional Lattices
Simplest examples

• Long lengths in real space imply short lengths in 
reciprocal space and vice versa

a1

Simple Orthorhombic Bravais Lattice
with a3 > a2 > a1

a2

a3

b1

Reciprocal Lattice
Note: b1 > b2 > b3

b2

kx

ky

kz

x

y

z
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Three Dimensional Lattices
Simplest examples

• Reciprocal lattice is also hexagonal, but rotated
• See homework problem in Kittel

a1

Hexagonal Bravais Lattice

a2

a3

b1

Reciprocal Lattice

b2

b3
kx

ky

kz

x

y

z
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Face Centered - Body Centered Cubic
Reciprocal to one another

a1

a3

a2

Primitive vectors and the
conventional cell of fcc lattice

Reciprocal lattice is
Body Centered Cubic

b2

b1

b3

a 2π/a

kx

ky

kz

x

y

z
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Face Centered - Body Centered Cubic
Reciprocal to one another

b1

b3

b2

Reciprocal lattice is
Face Centered Cubic

Primitive vectors and the
conventional cell of bcc lattice

a2

a1

a3

2π/a
a

kx

ky

kz

x

y

z
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Wigner-Seitz Cell for
Face Centered Cubic Lattice 

Brillouin Zone =
Wigner-Seitz Cell for

Reciprocal Lattice

y

Face Centered Cubic
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Wigner-Seitz Cell for
Body Centered Cubic Lattice

Body Centered Cubic

Brillouin Zone =
Wigner-Seitz Cell for

Reciprocal Lattice
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Scattering and Fourier Analysis

• Note that k is a vector in reciprocal space with |k| = 2π/λ
• The in and out waves have the form:

exp( i kin. r - i ωt)  and  exp( i kout. r - i ωt)
• If the incoming wave drives the electron density, which 

then radiates waves, the amplitude of the outgoing wave 
is proportional to:

∫space dr n(r) exp(i (kin - kout ). r)

d

λ
kin kout

λ
|k| = 2π/λ
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Scattering and Fourier Analysis

d

λ
kin kout

λ
|k| = 2π/λ

• Define   ∆k = kin - kout

• Then we know from Fourier analysis that 
∫space dr n(r) exp(- i ∆k . r) = N cell nG

only if ∆k = G, where G is a reciprocal lattice vector
• Otherwise the integral vanishes

∆k = G
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Elastic Scattering

d

λ
kin kout

λ
|k| = 2π/λ∆k = G

• For elastic scattering (energy the same for in and out 
waves)   

| kin |  = | kout |, or  kin
2 =  kout

2 = | kin + G |2

• Then one arrives at the condition for diffraction:  (using -
G in expression above)

2 kin. G = G2

• Equivalent to the Bragg condition – see next lecture
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Summary on Reciprocal lattice
• All Crystals have a lattice of translations in real space, 

and a lattice of Fourier components in Reciprocal 
space

• Reciprocal lattice defined as
• G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3 ,

where the b’s are primitive vectors defined by
bi

. aj =  2π δij , where  δij = 1,  δij = 0, i ≠ j
• Any periodic function can be written

f(r) = ΣG fGexp( i G . r)  
• The reciprocal lattice is defined strictly by translations 

(it is a Bravais lattice in reciprocal space)
• Information about the basis for the actual crystal is in 

the values of the Fourier coefficients fG
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Next Lecture

• More on use of reciprocal lattice

• Diffraction from crystals – Ewald construction

• Continue reading Kittel Ch 2

• Start Crystal Binding (Chapter 3) if there is time


