Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from
http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

From Previous Lectures Crystals

- A crystal is a repeated array of atoms
- Crystal \Leftrightarrow Lattice $\quad+$ Basis

How can we study crystal structure?

- X-rays scatter from the electrons
- intensity proportional to the density $\mathbf{n}(\mathbf{r})$
- Mainly the core electrons around the nucleus
- High energy electrons
- Also mainly core electrons around the nucleus
- Neutrons scatter from the nuclei (and electron magnetic moment) or the core electrons near the nuclei
- The scattering amplitude is periodic - the same in each cell of the crystal
- Diffraction is the constructive interference of the scattering from the very large number of cells of the crystal Physics 460 F 2006 Lect 3

The crystal can be viewed as made up of planes of atoms

- There are many sets of parallel planes that can be drawn through the crystal
- Low index planes: more dense, more widely spaced
- High index planes: less dense, more closely spaced

Bragg Scattering Law

- Condition for constructive interference (Diffraction): $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
- Maximum $\lambda=2 d$
- Only waves with λ smaller than 2d can satisfy the Bragg scattering law for diffraction
- For a typical crystal the maximum $\mathrm{d} \sim 0.1-1 \mathrm{~nm}$, so that $\lambda<\sim 0.1-1 \mathrm{~nm}$

Physics 460 F 2006 Lect 3

What energy x-rays, neutrons..

 are required?- What energy waves (particles) can satisfy the Bragg scattering law for a typical crystal? $\lambda<0.1-1 \mathrm{~nm}$

From Homework 0: $\quad \lambda=0.1 \mathrm{~nm} \quad \lambda=1.0 \mathrm{~nm}$
X-rays
Neutron

Electron
$\mathrm{E}=1.2410$
$E=1.2410^{3} \mathrm{eV}$
$E=8.1610^{-2} \mathrm{eV}$
$\mathrm{E}=8.1610^{-4} \mathrm{eV}$
$\mathrm{E}=1.5010^{2} \mathrm{eV}$
$E=1.50 \mathrm{eV}$
See Fig. 1, Ch. 2 of Kittel for plot of E vs. λ
X-rays and neutrons at these energies penetrate solids and are useful for studies of the bulk material

Electrons of these energies scatter very strongly - they do not penetrate far and they can be used to study surfaces

Physics 460 F 2006 Lect 3

Example of scattering

- Aluminum (Al) is fcc with

$$
\mathrm{a}=0.405 \mathrm{~nm}
$$

- What is minimum energy x-ray that can satisfy the Bragg condition?

- The largest distance between planes is for 111 planes: $d=(a \sqrt{3}) / 3=a / \sqrt{3}$
- Maximum λ is $2 \mathrm{~d}=2 \mathrm{a} / \sqrt{ } 3=0.468 \mathrm{~nm}$
- Using $E=h \nu=h c / \lambda$, $\left(h c=1.24 \times 10^{-6} \mathrm{~m}=1.2410^{3} \mathrm{~nm}\right.$), the minimum energy x-ray for Bragg scattering is 2.65 keV .
- Higher energy x-rays are needed for diffraction from all other planes in the crystal

Why is a powder "better" than a single crystal for x-ray diffraction?

-For fixed λ, Bragg condition satisfied only for certain angles θ -Random powder automatically averages over all angles -Diffraction (Bragg Scattering) from a powder of crystallites -Example of too few crystallites (left) and better sample (right) http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html Physics 460 F 2006 Lect 3

Single crystal diffraction

-Crystal must be oriented in all directions in 3D space using "Gonier Spectrometer"
-Observe scattering only at Bragg angles for a fixed wavelength x-ray or neutrons or

Physics 460 F 2006 Lect 3

Alternative approach energy dispersive diffraction

-For fixed angle θ, vary the energy (i.e., λ) to satisfy Bragg condition for a sample (the "experiment")
-X-rays over broad energy range now available at synchrotrons like the Advanced Photon Source at Argonne

- Note that diffraction from a single crystallite is also used at the monochrometer to select X-rays with desired wavelength
-See http://www.aps.anl.gov/
Physics 460 F 2006 Lect 3

Periodic Functions and Fourier Analysis

- Any periodic function can be expressed in terms of its periodic Fourier components (harmonics).
- Example of density $\mathrm{n}(\mathrm{x})$ in 1 D crystal:

$$
\mathrm{n}(\mathrm{x})=\mathrm{n}_{0}+\Sigma_{\mathrm{m}>0}\left[\mathrm{C}_{\mathrm{m}} \cos (2 \pi \mathrm{mx} / \mathrm{a})+\mathrm{S}_{\mathrm{m}} \sin (2 \pi \mathrm{mx} / \mathrm{a})\right]
$$

- Easier expression:

$$
\begin{aligned}
& \mathrm{n}(\mathrm{x})=\Sigma_{\mathrm{m}} \mathrm{n}_{\mathrm{m}} \exp (\mathrm{i} 2 \pi \mathrm{px} / \mathrm{a}) \\
& \text { (easier because } \exp (\mathrm{a}+\mathrm{b})=\exp (\mathrm{a}) \exp (\mathrm{b}))
\end{aligned}
$$

- Expression for Fourier Components:
$n_{m}=\int_{0}^{a} d x n(x) \exp (-i 2 \pi m \times / a)$

Reciprocal Lattice and
 Fourier Analysis in 1D

- In 1D, b = $2 \pi / a$
- Periodic function $f(x)$:

$$
\begin{aligned}
f(x) & =\Sigma_{m} f_{m} \exp (\text { i } 2 \pi m x / a) \\
& =\Sigma_{m} f_{m} \exp (\text { i } m b x), m=\text { integer }
\end{aligned}
$$

- The set of all integers $\times \mathbf{b}$ are the reciprocal lattice

Reciprocal Lattice

- Reciprocal lattice is defined by the vectors

$$
\mathbf{G}\left(m_{1}, m_{2}, \ldots\right)=m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+m_{3} \mathbf{b}_{3}
$$

where the m's are integers and

$$
\mathbf{b}_{\mathbf{i}} \cdot \mathbf{a}_{\mathrm{j}}=2 \pi \delta_{\mathrm{ij}} \text {, where } \delta_{i \mathrm{i}}=1, \delta_{\mathrm{ij}}=0, \mathrm{i} \neq \mathrm{j}
$$

- The reciprocal lattice is a set of \mathbf{G} vectors that is determined by the real space Bravais lattice
- The only information about the actual basis of atoms is in the quantitative values of the Fourier components f_{G} in the Fourier analysis

$$
f(\mathbf{r})=\Sigma_{\mathbf{G}} \mathrm{f}_{\mathbf{G}} \exp (\mathrm{i} \mathbf{G} \cdot \mathbf{r})
$$

- Inversion formula:

$$
\mathrm{f}_{\mathbf{G}}=\int_{\text {cell }} \mathrm{dr} f(\mathbf{r}) \exp (-\mathrm{i} \underset{\text { Physics } 4}{\mathbf{G} \cdot \mathbf{r})}
$$

Fourier Analysis in 3 dimensions

- Define vector position $\mathbf{r}=(\mathrm{x}, \mathrm{y}, \mathrm{z}) \quad[\mathbf{r}=(\mathrm{x}, \mathrm{y})(2 \mathrm{D})]$
- Fourier analysis

$$
f(\mathbf{r})=\Sigma_{\mathbf{G}} \mathrm{f}_{\mathbf{G}} \exp (\mathrm{i} \mathbf{G} \cdot \mathbf{r})
$$

where the \mathbf{G} 's are vectors, i.e.,

$$
\begin{aligned}
& \exp (i \mathbf{G} \cdot \mathbf{r})=\exp \left(i\left(G_{x} x+G_{y} y+G_{z} z\right)\right) \\
& =\exp \left(i G_{x} x\right) \exp \left(i G_{y} y\right) \exp \left(i G_{z} z\right)
\end{aligned}
$$

- A periodic function satisfies
$f(r)=f(r+\mathbf{T})$ where \mathbf{T} is any translation vector
$T\left(n_{1}, n_{2}, \ldots\right)=n_{1} a_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$, integer n's
- Thus

$$
\begin{aligned}
& \mathrm{f}(\mathbf{r}+\mathbf{T})=\Sigma_{\mathbf{G}} \mathrm{f}_{\mathbf{G}} \exp (\mathrm{i} \mathbf{G} \cdot \mathbf{r}) \exp (\mathrm{i} \mathbf{G} \cdot \mathbf{T})=\mathrm{f}(\mathbf{r}) \\
& \Rightarrow \exp (\mathrm{i} \mathbf{G} \cdot \mathbf{T})=1 \Rightarrow \underset{\text { Physics } 460 \mathrm{~F} 2006 \text { Lect } 3}{\mathbf{G} \cdot \mathbf{T}=2 \pi \times \operatorname{integer}}
\end{aligned}
$$

Reciprocal Space

- Reciprocal space is the space of Fourier components
- The Fourier transform of a general function $\mathrm{g}(\mathbf{r})$:

$$
\begin{aligned}
& g(\mathbf{r})=\int_{\text {all }} d \mathbf{k} \mathbf{g}(\mathbf{k}) \exp (\mathrm{i} \mathbf{k} \cdot \mathbf{r}), \\
& \mathrm{g}(\mathbf{k})=(1 / 2 \pi) \int_{\text {all }} \mathrm{r} \mathbf{r} \mathbf{g}(\mathbf{r}) \exp (-\mathrm{i} \mathbf{k} \cdot \mathbf{r}),
\end{aligned}
$$

where $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ where k_{x}, k_{y}, k_{z} are continuous variables that can have any values.

- $\mathbf{k}=\left(k_{x}, k_{y}, k_{z}\right)$ is a vector in reciprocal space
- Reciprocal space is defined independent of any crystal!
-The reciprocal lattice is the set of Fourier components
$\mathbf{G}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}\right)=\mathrm{m}_{1} \mathbf{b}_{2}+\mathrm{m}_{2} \mathbf{b}_{2}+\mathrm{m}_{3} \mathbf{b}_{3}$,
which are vectors that form a lattice in reciprocal space
-For a periodic crystal the only non-zero Fourier components are for $\mathbf{k}=\mathbf{G}$
-For each Bravais lattice in "real space" there is a unique reciprocal lattice in reciprocal space.
-Real lattice: Set of translations $T\left(n_{1}, n_{2}, \ldots\right)=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$
Reciprocal lattice: Set of $\quad \mathbf{G}\left(m_{1}, m_{2}, m_{3}\right)=m_{1} \mathbf{b}_{1}+m_{2} \mathbf{b}_{2}+m_{3} \mathbf{b}_{3}$ Physics 460 F 2006 Lect 3

Reciprocal Lattice in 3D

- The primitive vectors of the reciprocal lattice are defined by the vectors $\boldsymbol{b}_{\boldsymbol{i}}$ that satisfy

$$
\mathbf{b}_{\mathrm{i}} \cdot \mathbf{a}_{\mathrm{j}}=2 \pi \delta_{\mathrm{ij}}, \text { where } \delta_{\mathrm{ij}}=\mathbf{1}, \delta_{\mathrm{ij}}=\mathbf{0}, \mathbf{i} \neq \mathbf{j}
$$

- How to find the b's?
- Note: b_{1} is orthogonal to a_{2} and a_{3}, etc.
- In 3D, this is found by noting that ($a_{2} \times a_{3}$) is orthogonal to a_{2} and a_{3}
- Also volume of primitive cell $V=\left|a_{1} \cdot\left(a_{2} \times a_{3}\right)\right|$
- Then $b_{i}=(2 \pi / V)\left(a_{j} x a_{k}\right)$, where $i \neq j \neq k$

Face Centered - Body Centered Cubic

 Reciprocal to one another

Primitive vectors and the conventional cell of fcc lattice

Reciprocal lattice is Body Centered Cubic Physics 460 F 2006 Lect 3

Three Dimensional Lattices Simplest examples

Reciprocal Lattice
Hexagonal Bravais Lattice

- Reciprocal lattice is also hexagonal, but rotated
- See homework problem in Kittel Physics 460 F 2006 Lect 3

Face Centered - Body Centered Cubic Reciprocal to one another

Reciprocal lattice is Face Centered Cubic

Primitive vectors and the conventional cell of bcc lattice

Physics 460 F 2006 Lect 3

Face Centered Cubic

Wigner-Seitz Cell for Face Centered Cubic Lattice

Brillouin Zone = Wigner-Seitz Cell for Reciprocal Lattice

Body Centered Cubic

Wigner-Seitz Cell for Body Centered Cubic Lattice

Brillouin Zone = Wigner-Seitz Cell for Reciprocal Lattice

Scattering and Fourier Analysis

- Note that \mathbf{k} is a vector in reciprocal space with $|\mathbf{k}|=2 \pi / \lambda$
- The in and out waves have the form: $\exp \left(\mathrm{i} \mathbf{k}_{\mathrm{in}} \cdot \mathbf{r}-\mathrm{i} \omega \mathrm{t}\right.$) and $\exp \left(\mathrm{i} \mathbf{k}_{\text {out }} \mathbf{r}-\mathrm{i} \omega \mathrm{t}\right.$)
- If the incoming wave drives the electron density, which then radiates waves, the amplitude of the outgoing wave is proportional to:
$\int_{\text {space }} \operatorname{dr} n(\mathbf{r}) \exp \left(\mathbf{i}\left(\mathbf{k}_{\text {in }}-\mathbf{k}_{\text {out }}\right) \cdot \mathbf{r}\right)$

Elastic Scattering

- For elastic scattering (energy the same for in and out waves)

$$
\left|\mathbf{k}_{\text {in }}\right|=\left|\mathbf{k}_{\text {out }}\right| \text {, or } \mathrm{k}_{\text {in }}^{2}=\mathrm{k}_{\text {out }}^{2}=\left|\mathbf{k}_{\text {in }}+\mathbf{G}\right|^{2}
$$

- Then one arrives at the condition for diffraction: (using G in expression above)

$$
2 \mathbf{k}_{\mathrm{in}} \cdot \mathbf{G}=\mathrm{G}^{2}
$$

- Equivalent to the Bragg condition - see next lecture

Scattering and Fourier Analysis

- Define $\Delta k=k_{\text {in }}-\mathbf{k}_{\text {out }}$
- Then we know from Fourier analysis that

$$
\int_{\text {space }} d \mathbf{r} n(\mathbf{r}) \exp (-\mathrm{i} \Delta \mathbf{k} \cdot \mathbf{r})=\mathrm{N}_{\text {cell }} \mathbf{n}_{\mathrm{G}}
$$

only if $\Delta k=G$, where \mathbf{G} is a reciprocal lattice vector

- Otherwise the integral vanishes

Summary on Reciprocal lattice

- All Crystals have a lattice of translations in real space, and a lattice of Fourier components in Reciprocal space
- Reciprocal lattice defined as
- $\mathbf{G}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots\right)=\mathrm{m}_{1} \mathbf{b}_{1}+\mathrm{m}_{2} \mathbf{b}_{2}+\mathrm{m}_{3} \mathbf{b}_{3}$, where the b's are primitive vectors defined by $\mathbf{b}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}}=2 \pi \delta_{\mathrm{ij}}$, where $\delta_{\mathrm{ij}}=1, \delta_{\mathrm{ij}}=0, \boldsymbol{i} \neq \boldsymbol{j}$
- Any periodic function can be written

$$
f(r)=\Sigma_{G} f_{G} \exp (i G \cdot r)
$$

- The reciprocal lattice is defined strictly by translations (it is a Bravais lattice in reciprocal space)
- Information about the basis for the actual crystal is in the values of the Fourier coefficients $\mathbf{f}_{\mathbf{G}}$

Next Lecture

- More on use of reciprocal lattice
- Diffraction from crystals - Ewald construction
- Continue reading Kittel Ch 2
- Start Crystal Binding (Chapter 3) if there is time

