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Solid State Physics 460- Lecture 5
Diffraction and the Reciprocal Lattice

Continued (Kittel Ch. 2)

Ewald Construction 

kin

kout
G

2θ
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Recall from previous lectures
• Definition of a crystal – Lattice + Basis

• Reciprocal lattice – Lattice in Fourier space
(reciprocal space)

• Diffraction from crystals – Bragg Condition –
2d sin θ = n λ

• Diffraction and the reciprocal lattice

• Today:
• Diffraction and the reciprocal lattice continued –

Ewald construction and the Brillouin Zone (BZ)
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Summary: Real and Reciprocal lattices

• Crystal lattice of translations:
T(n1,n2,…) = n1 a1 + n2 a2 + n3 a3

• Reciprocal lattice:
G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3 ,
where 
bi

. aj =  2π δij , where  δij = 1,  δij = 0, i ≠ j
• Any periodic function can be written

f(r) = ΣG fGexp( i G . r)  
• Information about the basis for the actual crystal is in 

the values of the Fourier coefficients
fG =  (1/Vcell) ∫cell d3r f(r) exp( - i G . r) 

Recall from 
Lecture 3

Primitive vectors

Kittel Ch. 2
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Bragg Scattering Law

• Condition for constructive interference (Diffraction):
2d sin θ = n λ

• Maximum λ = 2d
• Only waves with λ smaller than 2d can satisfy the Bragg 

scattering law for diffraction

• For a typical crystal the maximum d ~ 0.1 – 1 nm, so that
λ < ~ 0.1 – 1 nm

d
θθ

2 d sin θ

λ
λ

Recall from 
Lecture 3
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Scattering and Fourier Analysis

• Note that k is a vector in reciprocal space with |k| = 2π/λ
• The in and out waves have the form:

exp( i kin. r - i ωt)  and  exp( i kout. r - i ωt)
• If the incoming wave drives the electron density, which 

then radiates waves, the amplitude of the outgoing wave 
is proportional to:

∫space dr n(r) exp(i (kin - kout ). r)

d

λ
kin kout

λ
|k| = 2π/λ

Recall from 
Lecture 3
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Scattering and Fourier Analysis

d

λ
kin kout

λ
|k| = 2π/λ

• Define   ∆k = kin - kout
• Then we know from Fourier analysis that 

(1/Vcell) ∫cell dr n(r) exp(- i ∆k . r) = nG

only if ∆k = G, where G is a reciprocal lattice vector
• Otherwise the integral vanishes

∆k = G

Recall from 
Lecture 3

Note: These statements are for a perfect crystal  of size → infinity.
See prob. Kittel 2.4 for a finite crystal where the scattering 
is peaked at ∆k = G with a finite width.



Lecture 5 - Diffraction and Recip. Lat. - continued

2

Physics 460 F 2006  Lect 5 7

Elastic Scattering

d

λ
kin kout

λ
|k| = 2π/λ∆k = G

• For elastic scattering (energy the same for in and out 
waves)   

| kin |  = | kout |, or  kin
2 =  kout

2 = | kin + G |2

• Then one arrives at the condition for diffraction:  (using -
G in expression above)

2 kin
. G = G2

• Equivalent to the Bragg condition – see next lecture

Recall from 
Lecture 3

G Is any one of the 
recip. lattice vectors
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Ewald Construction

• Condition for 
diffraction: 

kout =  kin + G

and 

• | 2 kin
. G | = |G|2 = 2 | kin | | G | sin θ

⇒ |G| = 2 | kin | | sin θ 

kin

kout
G

2θ

Why?
Discussed 
in class(note sine function, not cosine)

G Is any one of the 
recip. lattice vectors
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Equivalent to 
Bragg Condition

• From last slide, 

| G | = 2 | kin | sin θ

• But | kin | = 2π/λ,  and | G | = n (2π/d), where d 
= spacing between planes 
(see homework, Kittel prob. 2-1)

• ⇒ Bragg condition 2d sin θ = n λ

kin

kout
G

2θ
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Geometric Construction of 
Diffraction Conditions  

• Recall kin – kout = G
and |kin| = |kout| 

• Consequence of condition 
| 2 kin

. G | = G2 

• The vector kin (and kout) lies along the 
perpendicular bisecting plane of a G vector

• One example is shown

b2

kin

b1

-kout G
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Diffraction and the 
Brillouin Zone  

• Brillouin Zone  - (BZ)  -
the Wigner-Seitz cell of 
the reciprocal lattice

• Formed by perpendicular 
bisectors of G vectors

• Special Role of Brillouin Zone
• Diffraction occurs only for k on 

surface of Brillouin Zone
• No diffraction occurs for any k

inside the first Brillouin Zone
• Important later in course

b2

kin

Brillouin Zone

b1

-kout G
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Comparison of diffraction 
from different lattices  

• The Bragg condition can also be written 
| G | = 2 | kin | sin θ

⇒ sin θ = (λ /4π) | G | 
• Thus the ratios of the sines of the angles 

for diffraction are given by:
sin θ1 / sin θ2 = | G1 | / | G2 |  

• Each type of lattice has characteristic ratios  
the positions of diffraction peaks as a 
function of sin θ 

• Simple scaling with λ
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Experimental Powder Pattern  
• Diffraction peaks at angles satisfying the 

Bragg condition
• Experimental example

Differences for 
imperfect powder
averages

Reciprocal Lattice units

http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/teaching.html
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Comparison of diffraction 
from different lattices  

• Ratios  sin θi / sin θ0 = | Gi | / | G0 | , where
θ0 is the lowest angle peak (smallest G)

• Easiest to give ratios of squares Gi
2 / G0

2

Simple Cubic lattice
(G in units of 2π/a)
Gi Gi

2 ratio
1,0,0      1            1
1,1,0      2            2
1,1,1      3            3
2,0,0      4            4
2,1,0      5            5
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Comparison of diffraction 
from different lattices - continued 

FCC real space lattice
(G in units of 2π/a)
Gi Gi

2 ratio
1,1,1      3            1
2,0,0      4           4/3
2,2,0      8           8/3
3,1,1      11        11/3
2,2,2      12          4
4,0,0      16         1/3         

BCC real space lattice
(G in units of 2π/a)
Gi Gi

2 ratio
1,1,0      2            1
2,0,0      4            2
2,1,1      6            3
2,2,0      8            4
3,1,0      10          5
2,2,2      12          6

Same ratios as Simple cubic!
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Example of KCl, KBr
• See Kittel Fig. 17

• KCl and KBr have fcc structure 
– expect fcc “powder patterns”

• But KCl has a special feature 
• K+ and Cl- have the same number 

of electrons, they scatter x-rays 
almost the same ---- thus KCl has 

• a pattern like simple cubic

2 θ

(111)

(200) (220)

(222)

(311)
Ι

KBr

2 θ

(111)

(200) (220)

(222)

(311)
Ι

KCl

Why does this happen?
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Comparison of diffraction 
from different lattices - continued 
• Lower symmetry lattices
• Example - Orthorhombic

G = (n1 2π/a1, n2 2π/a2, n3 2π/a3 )
• Lengths of G’s are in general not any special numbers 

since the a’s can be in any ratios

• Many lines in diffraction pattern because of many 
different values of |G|

• Hexagonal - length along c axis not related 
to lengths perpendicular to c axis
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Fourier Analysis of the basis  
• The intensity of the diffraction at each G is 

proportional to the square of the amplitude 
of the Fourier component

nG = (1/Vcell) ∫cell dr n(r) exp(- i G . r)
• It is also possible to regard the crystal 

density n(r) as a sum of atomic-like 
densities natom (r - Ri), centered at point Ri

n(r) = ∑ all i natom i (r - Ri)
• Then also  

nG = ∑ i in cell ∫space dr natom i (r - Ri) exp(- i G.r)
Cell
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One atom per cell and Form Factor
• Then one can set Ri = 0 and nG is the 

Fourier transform of one atom density
nG = ∫space dr natom (r) exp(- i G . r)

• Called Form Factor
• Example in Kittel

natom (r) |r|

|G|

nG Values of |G| for a
particular crystal
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More than one atom per cell  
• nG = ∑ i in cell ∫space dr natom i ( r - Ri) exp(- i G . r)

=  ∑ i in cell exp(- i G . Ri) 
∫space dr natom i ( r - Ri) exp(- i G . (r - Ri) ) 

=  ∑ i in cell exp(- i G . Ri) 
∫space dr natom i ( r) exp(- i G . r) 

=  ∑ i in cell exp(- i G . Ri)  nG
atom i

• Interpretation: Structure Factor = 
Form factor nG

atom i x  phase factor exp(- iG . Ri)  
for each atom in unit cell
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Structure factor  
• Often the basis contains more than one atom 

that is same element, e.g., diamond structure
• Then nG

atom i = nG
atom is the same for each i 

and
nG =  ∑ i in cell exp(- i G . Ri)  nG

atom i

= nG
atom ∑ i in cell exp(- i G . Ri) 

• Define “pure” structure factor
S0

G =  (1/Ncell) ∑ i in cell exp(- i G . Ri)
where Ncell = number of atoms in cell

• Then nG = N0 S0
G nG

atom

NOTE - Kittel defines nG to be the “structure factor”
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Body Centered Cubic viewed as 
Simple Cubic with 2 points per cell 

S0
G =  (1/2) ∑ i =1,2 exp(- i G . Ri)

=  (1/2) ( 1 + exp(- i G . R2) 
=  (1/2) exp(- i G . R2/2) 
[exp( i G . R2/2) + exp(- i G . R2/2) ] 
= exp(- i G . R2/2) cos ( G . R2/2) 

Result:   If G = (v1 v2 v3) 2π/a
|S0

G | = 1 if sum of integers 
is even
| S0

G | = 0 if sum is odd

Same as we found before!  
FCC reciprocal lattice

a
a1

a3

a2

Points at  R1 = (0,0,0) ; 
R2 = (1,1,1) a/2

Physics 460 F 2006  Lect 5 23

Face Centered Cubic viewed as 
Simple Cubic with 4 points per cell 

a
a1

a2

a3

Points at   (0,0,0) ; (1,1,0) a/2 ; 
(1,0,1) a/2 ; (0,1,1) a/2 

S0
G =  (1/4) ∑ i =1,4 exp(- i G . Ri)

Result:

If G = (v1 v2 v3) 2π/a
then

S0
G = 1 if all integers 

are odd  or all are even

S0
G = 0 otherwise

Same as we found before!  
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Structure factor for diamond  
• Example: diamond structure

S0
G =  (1/2) ∑ i =1,2 exp(- i G . Ri)

• R1 = + (1/8, 1/8, 1/8)a
R2 = - (1/8, 1/8, 1/8)a

• Homework problem

• Similar approach would apply 
to a graphite plane
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Summary - Diffraction & Recip. Lattice
• Bragg Condition for diffraction
• Fourier Analysis and the Reciprocal Lattice

G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3 ,
where the b’s are primitive vectors defined by

bi
. aj =  2π δij , where δij = 1,  δij = 0, i ≠ j 

• Examples of Reciprocal lattice: fcc, bcc, ... 
• Ewald Construction
• Diffraction for kin, kout in planes - perp. bisectors of G’s
• Defines Brillouin Zone - no diffraction in first BZ
• Information about the actual crystal is in the values of 

the Fourier coefficients fG
fG = (1/Vcell) ∫cell dr f(r) exp(- i G . r)

• Form factor, “Pure” Structure factor
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Quasicrystals
• Not periodic in sense described before

• Example a crystal with periodicity a with a 
density wave that is a different period a´ with 
a´/a  not a rational number

n(x) = n1 cos(2πx/a) + n2 cos(2πx/a´) 
never repeats!

• Examples in higher dimensions
Orientation order without translational order

Penrose Tiles
Five fold symmetry in x-ray patterns
….
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Penrose Tiles 
• Many examples

Nice WWW sites

See this site for a Java program for Penrose tiles
http://www.geocities.com/SiliconValley/Pines/1684/Penrose.html

http://www.traipse.com/penrose_tiles/index.html
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Next Time

• Crystal Binding (Chapter 3)


