Lecture 5 - Diffraction and Recip. Lat. - continued

Recall from Summary: Real and Reciprocal lattices

- Crystal lattice of translations:
$\mathbf{T}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots\right)=\mathrm{n}_{1} \mathbf{a}_{1}+\mathrm{n}_{2} \mathbf{a}_{\mathbf{2}}+\mathrm{n}_{3} \mathbf{a}_{3}$ Primitive vectors
- Reciprocal lattice:
$\mathbf{G}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots\right)=\mathrm{m}_{1} \mathbf{b}_{1}+\mathrm{m}_{2} \mathbf{b}_{\mathbf{2}}+\mathrm{m}_{3} \mathbf{b}_{3}$, where
$\mathbf{b}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}}=2 \pi \delta_{\mathrm{ij}}$, where $\delta_{\mathrm{ij}}=1, \delta_{\mathrm{ij}}=0, \mathbf{i} \neq \mathbf{j}$
- Any periodic function can be written $\mathrm{f}(\mathrm{r})=\Sigma_{\mathrm{G}} \mathrm{f}_{\mathrm{G}} \exp (\mathrm{i} \mathbf{G} \cdot \mathrm{r})$
- Information about the basis for the actual crystal is in the values of the Fourier coefficients

$$
f_{G}=\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d^{3} r f(r) \exp (-i G \cdot r)
$$

Kittel Ch. 2

Recall from previous lectures

- Definition of a crystal - Lattice + Basis
- Reciprocal lattice - Lattice in Fourier space (reciprocal space)
- Diffraction from crystals - Bragg Condition $2 \mathrm{~d} \boldsymbol{\operatorname { s i n }} \theta=\mathrm{n} \lambda$
- Diffraction and the reciprocal lattice
- Today:
- Diffraction and the reciprocal lattice continued Ewald construction and the Brillouin Zone (BZ)

Recall from

Lecture 3

Bragg Scattering Law

- Condition for constructive interference (Diffraction): $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
- Maximum $\lambda=2 \mathrm{~d}$
- Only waves with λ smaller than 2d can satisfy the Bragg scattering law for diffraction
- For a typical crystal the maximum d ~ $0.1-1 \mathrm{~nm}$, so that $\lambda<\sim 0.1-1 \mathrm{~nm}$

Recall from

Lecture Scattering and Fourier Analysis

- Define $\Delta k=k_{\text {in }}-\mathbf{k}_{\text {out }}$
- Then we know from Fourier analysis that
$\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d \mathbf{r} n(\mathbf{r}) \exp (-\mathrm{i} \Delta \mathbf{k} \cdot \mathbf{r})=\mathbf{n}_{\mathbf{G}}$
only if $\Delta \mathrm{k}=\mathrm{G}$, where \mathbf{G} is a reciprocal lattice vector
- Otherwise the integral vanishes

Note: These statements are for a perfect crystal of size \rightarrow infinity. See prob. Kittel 2.4 for a finite crystal where the scattering is peaked at $\Delta k=G$ with a finite Width. Physics 460 F 2006 Lect 5

Lecture 5 - Diffraction and Recip. Lat. - continued

- But $\left|k_{\text {in }}\right|=2 \pi / \lambda$, and $|G|=n(2 \pi / d)$, where d = spacing between planes (see homework, Kittel prob. 2-1)
- \Rightarrow Bragg condition $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$

Physics 460 F 2006 Lect 5

Diffraction and the

 Brillouin Zone- Brillouin Zone - (BZ) the Wigner-Seitz cell of the reciprocal lattice
- Formed by perpendicular bisectors of G vectors
- Special Role of Brillouin Zone

- Diffraction occurs only for k on surface of Brillouin Zone
- No diffraction occurs for any k inside the first Brillouin Zone
- Important later in course Physics 460 F 2006 Lect 5

Comparison of diffraction from different lattices

- The Bragg condition can also be written $|G|=2\left|k_{\text {in }}\right| \sin \theta$ $\Rightarrow \boldsymbol{\operatorname { s i n }} \theta=(\lambda / 4 \pi)|\mathrm{G}|$
- Thus the ratios of the sines of the angles for diffraction are given by:
$\boldsymbol{\operatorname { s i n }} \theta_{1} / \boldsymbol{\operatorname { s i n }} \theta_{2}=\left|\mathrm{G}_{1}\right| /\left|\mathrm{G}_{2}\right|$
- Each type of lattice has characteristic ratios the positions of diffraction peaks as a function of $\boldsymbol{\operatorname { s i n }} \theta$
- Simple scaling with λ

Lecture 5 - Diffraction and Recip. Lat. - continued

Experimental Powder Pattern

- Diffraction peaks at angles satisfying the Bragg condition
- Experimental example

http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/teaching.html Physics 460 F 2006 Lect 5

Comparison of diffraction from different lattices

- Ratios $\sin \theta_{i} / \sin \theta_{0}=\left|G_{i}\right| /\left|G_{0}\right|$, where θ_{0} is the lowest angle peak (smallest G)
- Easiest to give ratios of squares $\mathrm{G}_{\mathrm{i}}{ }^{2} / \mathrm{G}_{0}{ }^{2}$

Simple Cubic lattice
(G in units of $2 \pi / a$)

G_{i}	$\mathrm{G}_{\mathrm{i}}{ }^{2}$	ratio
$1,0,0$	1	1
$1,1,0$	2	2
$1,1,1$	3	3
$2,0,0$	4	4
$2,1,0$	5	5

Example of $\mathrm{KCl}, \mathbf{K B r}$

- See Kittel Fig. 17
- KCl and KBr have fcc structure - expect fcc "powder patterns"

- But KCl has a special feature
- K+ and Cl - have the same number of electrons, they scatter x-rays almost the same ---- thus KCl has
- a pattern like simple cubic

Why does this happen?

Fourier Analysis of the basis

- The intensity of the diffraction at each \mathbf{G} is proportional to the square of the amplitude of the Fourier component

$$
n_{G}=\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d r n(r) \exp (-i G \cdot r)
$$

- It is also possible to regard the crystal density $\mathrm{n}(\mathrm{r})$ as a sum of atomic-like densities $\mathbf{n}^{\text {atom }}\left(\mathbf{r}-\mathbf{R}_{\mathrm{i}}\right)$, centered at point R_{i} $n(r)=\sum_{\text {all } i} i^{\text {natom } i}\left(r-R_{i}\right)$
- Then also $\mathbf{n}_{\mathrm{G}}=\sum_{\mathrm{i} \text { in cell }} \int_{\text {space }} \mathrm{dr} \mathbf{n}^{\text {atom } \mathrm{i}}\left(\mathbf{r}-\mathrm{R}_{\mathrm{i}}\right) \exp (-\mathrm{i} \mathrm{G} \cdot \mathrm{r})$

Physics 460 F 2006 Lect 5

Lecture 5 - Diffraction and Recip. Lat. - continued

One atom per cell and Form Factor

- Then one can set $R_{i}=0$ and n_{G} is the Fourier transform of one atom density $n_{G}=\int_{\text {space }} d r n^{\text {atom }}(r) \exp (-i G \cdot r)$

- Called Form Factor
- Example in Kittel

Structure factor

- Often the basis contains more than one atom that is same element, e.g., diamond structure
- Then $\mathbf{n}_{\mathrm{G}}{ }^{\text {atom } \mathrm{i}}=\mathrm{n}_{\mathrm{G}}{ }^{\text {atom }}$ is the same for each i and

$$
\begin{aligned}
n_{G} & =\sum_{i \text { in cell }} \exp \left(-i G \cdot R_{i}\right) n_{G} \operatorname{atom~} i \\
& =n_{G} \operatorname{atom} \sum_{i \text { in cell }} \exp \left(-i G \cdot R_{i}\right)
\end{aligned}
$$

- Define "pure" structure factor
$S_{G}^{0}=\left(1 / N_{\text {cell }}\right) \sum_{i \text { in cell }} \exp \left(-i G \cdot R_{i}\right)$
where $\mathrm{N}_{\text {cell }}=$ number of atoms in cell
- Then $\mathbf{n}_{\mathrm{G}}=\mathbf{N}^{0} \mathbf{S}_{\mathbf{G}} \mathbf{n}_{\mathrm{G}}{ }^{\text {atom }}$

NOTE - Kittel defines n_{G} to be the "structure factor" Physics 460 F 2006 Lect 5

Face Centered Cubic viewed as
Simple Cubic with 4 points per cell
$S_{G}^{0}=(1 / 4) \sum_{i=1,4} \exp \left(-i G \cdot R_{i}\right)$
Result:
If $\mathbf{G}=\left(\mathbf{v}_{1} \mathbf{v}_{\mathbf{2}} \mathbf{v}_{\mathbf{3}}\right) \mathbf{2 \pi / a}$ then
$\mathrm{S}^{0}{ }_{\mathrm{G}}=1$ if all integers are odd or all are even
$\mathbf{S}^{0}{ }_{G}=\mathbf{0}$ otherwise
Same as we found before! $B C C$ reciprocal lattice

Points at $(0,0,0) ;(1,1,0) a / 2$; $(1,0,1) \mathrm{a} / 2 ;(0,1,1) \mathrm{a} / 2$ Physics 460 F 2006 Lect

More than one atom per cell

- $n_{G}=\sum_{\mathrm{i} \text { in cell }} \int_{\text {space }} \operatorname{dr} \mathbf{n}^{\text {atom }} \mathbf{i}\left(r-R_{i}\right) \exp (-i G \cdot r)$
$=\sum_{i \text { in cell }} \exp \left(-i \mathbf{G} \cdot \mathbf{R}_{\mathrm{i}}\right)$
$\int_{\text {space }} \operatorname{dr} n^{\text {atom } i}\left(r-R_{i}\right) \exp \left(-i G \cdot\left(r-R_{i}\right)\right)$
$=\Sigma_{\text {in cell }} \exp \left(-\mathrm{i} \mathbf{G} \cdot \mathbf{R}_{\mathrm{i}}\right)$
$\int_{\text {space }} \operatorname{dr} n^{\text {atom } i}(r) \exp (-i G \cdot r)$
$=\sum_{\mathrm{i} \text { in cell }} \exp \left(-\mathrm{i} G \cdot \mathbf{R}_{\mathrm{i}}\right) \mathbf{n}_{\mathrm{G}}{ }^{\text {atom } \mathrm{i}}$
- Interpretation: Structure Factor $=$ Form factor \mathbf{n}_{G} atom $\mathbf{i} \mathbf{x}$ phase factor $\exp \left(-i G \cdot \mathbf{R}_{\mathrm{i}}\right)$ for each atom in unit cell Physics 460 F 2006 Lect 5

```
Body Centered Cubic viewed as Simple Cubic with 2 points per cell \(S^{0}{ }_{G}=(1 / 2) \sum_{i=1,2} \exp \left(-i G \cdot R_{i}\right)\) \(=(1 / 2)\left(1+\exp \left(-i G \cdot R_{2}\right)\right.\)
\(=(1 / 2) \exp \left(-i G \cdot R_{2} / 2\right)\) \(\left[\exp \left(i G \cdot R_{2} / 2\right)+\exp \left(-i G \cdot R_{2} / 2\right)\right]\) \(=\exp \left(-i G \cdot R_{2} / 2\right) \cos \left(G \cdot R_{2} / 2\right)\)
Result: If \(\mathbf{G}=\left(\mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3}\right) \mathbf{2 \pi / a}\)
\(\left|S_{G}{ }_{G}\right|=1\) if sum of integers is even
\(\left|S_{G}{ }_{G}\right|=0\) if sum is odd
Same as we found before!
FCC reciprocal lattice
```


Structure factor for diamond

- Example: diamond structure
$S_{G}{ }_{G}=(1 / 2) \sum_{i=1,2} \exp \left(-i G \cdot R_{i}\right)$
- $R_{1}=+(1 / 8,1 / 8,1 / 8) a$
$R_{2}=-(1 / 8,1 / 8,1 / 8) a$
- Homework problem
- Similar approach would apply to a graphite plane

Physics 460 F 2006 Lect 5

Lecture 5 - Diffraction and Recip. Lat. - continued

Summary - Diffraction \& Recip. Lattice

- Bragg Condition for diffraction
- Fourier Analysis and the Reciprocal Lattice $\mathbf{G}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots\right)=\mathrm{m}_{1} \mathbf{b}_{1}+\mathrm{m}_{2} \mathbf{b}_{\mathbf{2}}+\mathrm{m}_{3} \mathbf{b}_{3}$, where the b's are primitive vectors defined by
$\mathbf{b}_{\mathrm{i}} \cdot \mathbf{a}_{\mathrm{j}}=2 \pi \delta_{\mathrm{ij}}$, where $\delta_{\mathrm{ij}}=\mathbf{1}, \delta_{\mathrm{ij}}=\mathbf{0}, \mathbf{i} \neq \mathbf{j}$
- Examples of Reciprocal lattice: fcc, bcc, ...
- Ewald Construction
- Diffraction for $\mathbf{k}_{\mathrm{in}}, \mathbf{k}_{\text {out }}$ in planes - perp. bisectors of \mathbf{G} 's
- Defines Brillouin Zone - no diffraction in first BZ
- Information about the actual crystal is in the values of the Fourier coefficients f_{G}

$$
f_{G}=\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d r f(r) \exp (-i G \cdot r)
$$

- Form factor, "Pure" Structure factor

Quasicrystals

- Not periodic in sense described before
- Example a crystal with periodicity a with a density wave that is a different period a^{\prime} with a'la not a rational number
$n(x)=n_{1} \cos (2 \pi x / a)+n_{2} \cos \left(2 \pi x / a^{\prime}\right)$
never repeats!
- Examples in higher dimensions Orientation order without translational order Penrose Tiles
Five fold symmetry in x-ray patterns
\square
Physics 460 F 2006 Lect 5

