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Phonons I - Crystal Vibrations
(Kittel Ch. 4)
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Outline
• Vibrations of atoms in crystals

• Normal modes of harmonic crystal - exact solution 
of the problem of an infinite number of coupled 
oscillators with a few lines of algebra

• Relation to sound waves for long wavelength 

• Role of Brillouin Zone
- relation to Bragg Diffraction

• Quantization and Phonons

• (Read Kittel Ch 4)
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Vibration of atoms in a linear chain 

^Displacements ∆Rn = un x
Equilibrium positions Rn

0 = n a x̂
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u
Plot of displacements u  

a

Consider atoms in a line restricted to move along the line
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Energy due to Displacements
• The energy of the crystal changes if the atoms are 

displaced.  
• Analogous to springs between the atoms
• Suppose there is a spring between each pair of  atoms 

in the chain.  For each spring the change is energy is:   
∆E = ½ C (un+1 – un )2

a

un un+1

• Note: There are no linear terms if we consider small
changes u from the equilibrium positions

C = “spring constant”
Notation in Kittel

More later on this
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Force due to Displacements
• The force on atom n is due to the two springs on the 

right and left sides of the atom
Fn = C [ (un+1 – un)  - (un – un-1) ]
= C [ un+1 + un-1 – 2 un ]

a

un un+1

• The right spring is compressed more than the left one.
Thus the force on atom n is to the left

• Note: For simplicity we consider only springs connecting 
nearest neighbors – in general there can be interactions 
with more distant neighbors

a

un-1
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Oscillations of linear chain

• Newton’s Law:
M d2 un / dt2 = Fn = C [ un+1 + un+1 - 2 un] 

• Time dependence: Let un(t) =  un exp(-iωt) 
(sin(ωt) or cos(ωt) are also correct but harder to use)  
Then

M ω2 un = C [un+1 + un+1 - 2 un]

• How to solve? Looks complicated - an infinite number 
of coupled oscillators!

n un

a
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Oscillations of linear chain

• Since the equation is the same at each atom i, the 
solution must have the same form at each i differing 
only by a phase factor.  This is most easily written

un =  u exp(ikna)       k=2π/λ

• Then
M ω2 u = C [exp(ika) + exp(-ika) - 2 ] u

or 
ω2 =  (C / M ) [2 cos(ka) - 2]

un

Integer n denotes the atomImaginary number
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Oscillations of linear chainun

• A more convenient form is
ω2 =  (C / M ) [2 cos(ka) - 2]

=  4 (C / M ) sin2(ka/2) 

(using cos(x) = cos(x/2) - sin2(x/2) = 1 - 2 sin2(x/2))

• Finally:    ω =  2 (C / M ) 1/2 | sin (ka/2) | 

Physics 460 F 2006  Lect 8 9

Oscillations of linear chain
• We have solved the infinite set of coupled 

oscillators!
• The solution is an infinite set of independent 

oscillators, each labeled by k (wavevector) and having 
a frequency

ωk =  2 (C / M ) 1/2 |sin (ka/2)| 
• The relation ωk as a function of k is called a

dispersion curve

0 2π/aπ/a

ωk

k
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Brillouin Zone
• Consider k ranging over all reciprocal space.  

The expression for ωk is periodic 

ωk =  2 (C / M ) 1/2 |sin (ka/2)| 

0 2π/aπ/a

ωk

-2π/a −π/a

Brillouin Zone

• All the information is in the first Brillouin Zone - the 
rest is repeated with periodicity 2π/a - that is, the 
frequencies are the same for ωk and ωk+G where G is 
any reciprocal lattice vector G = integer times 2π/a 

• What does this mean?

k
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Meaning of Periodicity in 
Reciprocal space

• In fact the motion of atoms with wavevector k is identical
to the motion with wavevector k + G 

• All independent vibrations are described by k inside BZ

sin (ka/2) with k ~ 2π/3 sin ( (k + 2π/a) a/2)

un
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Meaning of Periodicity in 
Reciprocal space  -- II

• This is a general result valid in all crystals in all 
dimensions (more later on 2 and 3 dimensions)

• The vibrations are an example of excitations.  The 
atoms are not in their lowest energy positions but are 
vibrating.  

• The excitations are labeled by a wavevector k and are 
periodic functions of k in reciprocal space.  

• All the excitations are counted if one considers only k 
inside the Brillouin zone (BZ). The excitations for k 
outside the BZ are identical to those inside and are not 
independent excitations.
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Group velocity of vibration wave
• The wave un =  u exp(ik (n a) - iω t) is a traveling wave
• Group velocity vk = d ωk / dk = slope of ωk vs k

ωk =  2 (C / M ) 1/2 sin (ka/2) 
so

vk =  a (C / M ) 1/2 cos (ka/2) 

0-π/a π/a

ωk

For small k, vk =  v sound

vk =  0 at 
BZ boundary

k
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Sound Velocity
• In the long wavelength (small k) limit the atomic 

vibration wave un =  u exp(ik(na) - iω t) is an elastic 
wave

• Atoms act like a continuum for ka = 2πa/λ << 1
• Speed  of sound: vk = d ωk / dk = ωk/k = v independent 

of k for small k 
• From previous silde:  vsound =  a (C / M ) 1/2 

• Homework to show the relation to elastic waves

0-π/a π/a

ωk

vk =  v sound

k
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What is significance of zero Group 
velocity at BZ Boundary?

• Fundamentally different from elastic wave in a 
continuum

• Since ωk is periodic in k it must have vk = d ωk / dk = 0 
somewhere!

• Occurs at BZ boundary because ωk must be 
symmetric about the points on the boundary

0-π/a π/a

ωk

vk =  0 at 
BZ boundary

k outside
BZ

k
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What is significance of zero Group 
velocity at BZ Boundary?

• Example of Bragg Diffraction!
• Any wave (vibrations or other waves) is diffracted if k 

is on a BZ boundary – Recall from the description of 
Bragg Diffraction – Kittel, Ch. 2, Lecture 3, 5

• Leads to standing wave with group velocity = 0

0-π/a π/a

ωk

vk =  0 at 
BZ boundary

k
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Vibration at the BZ Boundary 

The displacement is un = u exp(ikna )  = u exp(inπ)

un-3 un-1un-2 un un+1 un+2 un+3 un+4 un+5 un+6

un-3 un-1un-2 un un+1 un+2 un+3 un+4 un+5 un+6

u
Plot of displacements u  

a

At the boundary of the Brillouin Zone in one dimension 
k = π/a  

The vibration at the BZ boundary is a standing wave!
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Two atoms per cell - Linear chain
• To illustrate the effect of having two different atoms 

per cell, consider the simplest case atoms in a line 
with nearest neighbor forces only

• Now we must calculate force and acceleration of each 
of the atoms in the cell

Fn
1 = K [ un-1

2 + un
2 - 2 un

1]  = M1 d2 un
1 / dt2

and
Fn

2 = K [ un+1
1 + un

1 - 2 un
2]  = M2 d2 un

2 / dt2

Cell n un
1

a

un
2

Note subscripts - Each atom has 
one neighbor in the same cell and 

one neighbor in the next cell, left or right
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Oscillations with two atoms per cell
• Since the equation is the same for each cell n, the 

solution must have the same form at each n differing 
only by a phase factor.  This is most easily written

un
1 =  u1 exp(ik (n a) - iω t ) 

un
2 =  u2 exp(ik (n a) - iω t )

• Inserting in Newton’s equations gives the coupled 
equations

-M1 ω2 u1 = K [(exp(-ik a) + 1) u2 - 2 u1] 
and 

-M2 ω2 u2 = K [(exp( ik a) + 1) u1 - 2 u2]    
• Or 

[2 K - M1 ω2 ] u1 - K (exp(-ik a) + 1) u2 = 0 
and

[2 K - M2 ω2 ] u2 - K (exp( ik a) + 1) u1 =0      
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Oscillations with two atoms per cell
• From the previous slide 

2 K - M1 ω2 u1 - K (exp(-ik a) + 1) u2 = 0 
and 

2 K - M2 ω2 u2 - K (exp( ik a) + 1) u1 = 0           
These two equations can be written in matrix form: 

2 K - M1 ω2 - K (exp(-ik a) + 1) 

- K (exp( ik a) + 1)       2 K - M2 ω2

u1

u2
= 0

• The solution is that the determinant must vanish:

2 K - M1 ω2 - K (exp(-ik a) + 1) 

- K (exp( ik a) + 1)       2 K - M2 ω2
= 0
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Oscillations with two atoms per cell
• There are two solutions for each wave vector k

“Acoustic”

“Optic”

0-π/a π/a

ωk

“Gap”
No vibration waves are 

allowed at these frequencies 

k
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Oscillations with two atoms per cell
• Limits:
• k ~ 0

Acoustic:    ω2 =  (1/2) (K / (M1 + M2) ) k2 a2

Optic:        ω2 =  2 K [(1 / M1 ) + (1/M2) ] = 2 K /µ
• k = π/a 

Acoustic:  ω2 = 2 K / Mlarge Optic: ω2 = 2 K / MsmaLL

Acoustic -
Total Mass

Optic -
Reduced Mass

“Acoustic”

“Optic”

0-π/a π/a

ωk

k
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Modes for k near 0

• Optic at k = 0 - opposed motion - larger displacement 
of smaller mass

un
1

a

un
2

• Acoustic at k near 0 - motion of cell as a whole

un
1

a

un
2

Physics 460 F 2006  Lect 8 24

Modes for k at BZ boundary 

• Optic at k = π/a - motion of smaller mass
un

1

a

un
2= 0

• Each type of atom moves in opposite directions in 
adjacent cells 

• Leads to two modes, each with only one type of atoms 
moving 

• Acoustic at k = π/a - motion of larger mass 
un

1= 0

a

un
2

Atom 2 does not move
because there are no forces on it!
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Vibration waves in 2 or 3 dimensions
• The position Rn

0 and displacement un are vectors 
Rn = Rn

0 + un

• The force on an atom is a vector  Fn that depends 
upon the displacements of all the neighbors  

un

Looks complicated

Each atom exerts forces
on each of its neighbors

How do we deal 
with this?
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Vibration waves in 2 or 3 dimensions
• We can understand vibrations waves in 2 and 3 

dimensional crystals using the same ideas as for 
vibrations of atoms in a line

k

A wave is defined by 
the direction of propagation 

of the wave – k-vector 

Planes of atoms perpendicular
to k move together

Like a one-dimensional 
problem!

un

Physics 460 F 2006  Lect 8 27

Vibration waves in 2 or 3 dimensions
• Every atom in a plane has the same displacement un

and the same force Fn on it
• Thus it is sufficient to  solve equations for 

one atom in each plane – all the 
other atoms obey the 
same equations

k
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Vibration waves in 2 or 3 dimensions
• Newton’s Law:     M d2 un / dt2 = Fn

• General Solution:
un(t) = ∆u exp(ik . Rn - iωt) 

Vector dot product - same 
for all atoms in plane 

perpendicular to k
k
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Vibration waves in 2 or 3 dimensions
• Normal modes of vibrations in any crystal can be 

described as waves in which planes move rigidly (Note 
that there are different sets of planes for different 
directions of the k vector!) 

• The forces between planes can be described by an 
effective spring constant Ceff – we will discuss how to 
determine the effective constant next time

• Then Newton’s equations become
M d2 un / dt2 = Fn = Ceff [ un-1

2 + un
2 - 2 un

1] 
• Note:  n denotes a plane of atoms, n+1 and n-1 

denote the neighboring planes
• un is an atom in plane n; un+1 an atom in plane n+1, etc.
• The same as a one-dimensional problem!
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Vibration waves in 2 or 3 dimensions
• Thus all normal modes of vibrations in any crystal can 

be described in the same way as a one dimensional 
chain – but be careful to interpret the results properly!

• There are different sets of planes for different directions of 
the k vector

• The effective spring constant Ceff

must be determined – it is different 
for different directions of k and 
for different types of motion

• In 2 and 3 dimensions there 
can be longitudinal
and transverse motions

k
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Vibration waves in 2 or 3 dimensions
• It is easier to visualize if we turn the crystal to orient 

the planes vertical and the k vector horizontal
• Longitudinal motion

• Transverse motion

k
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Oscillations in higher dimensions

• Simplest example: Simple cubic with central forces
• For k in x direction each atom in the vertical planes 

moves the same:    un = un =  u exp(ik (n a) - iω t) 
• Longitudinal motion: for un in x direction: the 

problem is exactly the same as a linear chain
ω =  2 (CL

eff / M ) 1/2 | sin (ka/2) |  where CL
eff = C

un

a

Spring constant C 
for nearest neighbors
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Oscillations in higher dimensions

• Transverse motion: k in x direction; motion vn in y 
direction

vn = vn =  v exp(ik (n a) - iω t) 
• Central forces give no restoring force!  Unstable!
• Need other forces - non-central or second neighbor 

vn

a

Spring constant C 
for nearest neighbors
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Oscillations in higher dimensions

• The is a restoring force for transverse motion (shear 
motion) if there are second neighbor forces

ω2 =  (1/2)( C2 / M ) [4 cos(ka) - 4] 
=    2 (C2 / M ) 1/2 | sin (ka/2) | 

4 neighbors
Geometric factor

= cos2(π/4)
Second neighbor

vn

a
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Meaning of Periodicity in 
Reciprocal space  -- Again 

• The same logic that we used for one dimension 
applies to 2 and 3 dimensions

• The vibrations are an example of excitations.  The 
atoms are not in their lowest energy positions but are 
vibrating.  

• The excitations are labeled by a wavevector k and are 
periodic functions of k in reciprocal space.  

• All the excitations are counted if one considers only k 
inside the Brillouin zone (BZ). The excitations for k 
outside the BZ are identical to those inside and are not 
independent excitations.

• This is a general result valid in all crystals in all 
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Diffraction and the 
Brillouin Zone  

• Brillouin Zone formed by
perpendicular bisectors 
of G vectors

• Consequence:
No diffraction for any k
inside the first Brillouin Zone

• Special Role of Brillouin Zone (Wigner-Seitz 
cell of recip. lat.)  as opposed to any other 
primitive cell 

• Important later in course -- Here we have 
example for vibrations -- later for electrons

b2

kin

Brillouin Zone

b1

kout G

From Lecture 5
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Summary
• Normal modes of vibrations in a crystal with harmonic 

forces : 
• Independent oscillators are labeled by wavevector k and have 

frequency ωk
• The relation ωk as a function of k is called a dispersion curve
• ωk periodic as a function of k in reciprocal space
• All independent oscillations are described by wavevectors k

inside the Brillouin Zone
• For more than one atom per cell there are acoustic and optic 

modes of vibration
• Sound waves are long wavelength (small k ) acoustic 

modes
• Group velocity of the waves vanish at BZ boundary

Bragg scattering!
• Linear chain, planes in crystals – more next time
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Next time
• Why do vibrations in crystals act like atoms 

connected by springs?

• How do we determine the effective spring constant 
from the forces that bind the atoms together?

• Quantization and Phonons

• Is phonon “momentum” real?

• Experimental Measurements

• (Read Kittel Ch 4)


