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Phonons I - Crystal Vibrations
Continued

(Kittel Ch. 4)

View of triple axis neutron scattering facility at 
National Research Council of Canada

http://neutron.nrc.ca/welcome.htm
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Outline
• Examples in higher dimensions

• How many modes are there?

• Quantization and Phonons

• Experimental observation by inelastic scattering

• (Read Kittel Ch 4)
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Energy due to Displacements
• The energy of the crystal changes if the atoms are 

displaced.  
• Analogous to springs between the atoms
• Suppose there is a spring between each pair of  atoms 

in the chain.  For each spring the change is energy is:   
∆E = ½ C (un+1 – un )2

a

un un+1

• Note: There are no linear terms if we consider small
changes u from the equilibrium positions

C = “spring constant”
Notation in Kittel

More later on this

From last lecture
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What determines the “spring constant”
• The energy of the crystal changes if the atoms are 

displaced – because the atoms are bound together!
• Example: Atoms in a line with binding of each pair of 

atoms that depends of the distance φ (| Rn+1 – Rn |)
• For each bond the change is energy is:     

∆E = ½ φ’’ (un+1 – un )2 = ½ C (un+1 – un )2

a

un un+1

• Examples:  Coulomb, Van der Waals attraction, 
replusive terms,  etc. given before

C = “spring constant”φ’’ = second 
derivative

of φ (r)
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Vibration waves in 2 or 3 dimensions

Vector dot product - same 
for all atoms in plane 

perpendicular to k
k

• Newton’s Law:     M d2 un / dt2 = Fn

• General Solution:
un(t) = ∆u exp(ik . Rn - iωt) 

Consider the motion
to be vibrations of 
planes of atoms

-----------
Like a chain in 
one dimension!

From last lecture
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Vibration waves in 2 or 3 dimensions
• Easier to see with planes vertical and k vector horizontal
• Then Newton’s equations become

M d2 un / dt2 = Fn = Ceff [ un-1 + un-1 - 2 un]
• Each plane can move

in three directions –
one longitudinal and 
two transverse

k
Like  one 

dimension!
-----------

But the effective spring 
constant Ceff is different 

for each mode 
How do we find Ceff ?



Lecture 9 - Crystal Vibrations continued - Phonons I

2

Physics 460 F 2006  Lect 9 7

Central Forces
• For Central Forces the depends only on the distance 

between the atoms
• The energy per atom is 

E = (1/2(1/N) Σnm φnm (| Rn - Rn+m |)
= E0 + (1/4N) Σnm φnm ′′ (∆| Rn - Rn+m |) 2 + ….

• The force Fn is along the 
direction of the neighbor

• The length changes only for
displacements un+m- un along
the direction of the neighbor

R0
n

R0
n+m

un+m- un

Fn

θn

Note angle θi
depends on 
neighbor i
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Geometric factors for Central Forces
• We will consider waves with each atom displaced in 

the same direction – for simplicity – then we always 
need the force in the direction of the motion Fn||

• Fs|| = - Σi φi′′ [cos( θn ) ] 2 |un+m- un|

R0
n

R0
n+m

un+m- un

Fn

θn

Note angle θi
depends on 
neighbor i

Fs||

θn

Geometric factor
depends on 
neighbor i
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Vibration waves in 2 or 3 dimensions
• Newton’s equations 

M d2 un / dt2 = Fn = Ceff [ un+1 + un-1 - 2 un]

k

For each type of motion, 
Ceff = Σi φi′′ [cos( θi )  ] 2
where θi is the angle 
between the displacement
vector and the direction 
to neighbor i 

For one atom per cell 
the resulting dispersion curve is
ωk =  2 (Ceff / M ) 1/2 |sin (ka/2)| 
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Example – fcc with nearest-neighbor 
pair potential φ(r)

X

y

z

k

Consider waves with k in x direction  
Longitudinal motion in x direction 
Each atom has 4 neighbors in each of the two neighboring 
planes with cos(θ)2 = ½
Ceff = 4 φi′′/2 ωk = 23/2 (φi′′/M )1/2 |sin (ka/2)| 
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Example – fcc with nearest-neighbor 
pair potential φ(r)

X

y

z

k

Consider waves with k in x direction  
Transverse motion in y direction 
Each atom has 2 neighbors in each of the two neighboring 
planes with cos(θ)2 = ½ and 2 neighbors with cos(θ) = 0
Ceff = 2 φi′′/2 ωk = 2 (φi′′/M )1/2 |sin (ka/2)|
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Waves traveling in x direction in 
fcc crystal with one atom per cell  

0 π/a

ωk

3 Acoustic modes
Each has ω ~ k at small k

k

In the case of nearest neighbor forces, the longitudinal ωk
is higher than the transverse ωk by the factor  21/2

In this case the two transverse
modes are “degenerate”, i.e.,
they have the same frequency
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Oscillations in general 3 dimensional 
crystal with N atoms per cell

0 π/a

ωk
3 Acoustic modes

Each has ω ~ k at small k

k

3 (N -1) Optic Modes

−π/a
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Quantization of Vibration waves
• Max Planck - The beginning of quantum 

mechanics in 1901   
• There were observations and experimental facts 

that showed there were serious issues that 
classical mechanics failed to explain

• One was radiation – the laws of classical 
mechanics predicted that light radiated from hot 
bodies would be more intense for higher 
frequency (blue and ultraviolet) – totally wrong! 

• Planck proposed that light was emitted in 
“quanta” – units with energy E = h ν =   ω

• Planck’s constant h --- “h bar” =    = h/2π

• The birth of quantum mechanics
• Applies to all waves!

h
h
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Quantization of Vibration waves
• Each independent harmonic oscillator has quantized 

energies:
en = (n + 1/2) hν = (n + 1/2)  ω

• We can use this here because we have shown that 
vibrations in a crystal are independent waves, each 
labeled by k (and index for the type of mode - 3N 
indices in a 3 dimen. crystal with N atoms per cell)

• Since the energy of an oscillator is 1/2 kinetic and 1/2 
potential, the mean square displacement is given by
(1/2) M ω2 u2 = (1/2) (n + 1/2) hω
where M and u are appropriate to the particular mode
(e.g. total mass for acoustic modes, reduced mass for 
optic modes , ….) 

h
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Quantization of Vibration waves
• Quanta are called phonons
• Each phonon carries energy  ω
• For each independent oscillator (i.e., for each 

independent wave in a crystal), there can be any 
integer number of phonons 

• These can be viewed as particles
• They can be detected experimentally as creation or 

destruction of quantized particles
• Later we will see they can transport energy just like a 

gas of ordinary particles (like molecules in a gas).

h
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Inelastic Scattering and Fourier Analysis

• The in and out waves have the form: 
exp( i kin

. r - i ωint)  and  exp( i kout
. r - i ωoutt)

• For elastic scattering we found that diffraction 
occurs only for kin - kout = G

• For inelastic scattering the lattice planes are 
vibrating and the phonon supplies wavevector
kphonon and frequency ωphonon

d

λ
kin

kout
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Inelastic Scattering and Fourier Analysis
• Result:
• Inelastic diffraction occurs  for 

kin - kout = G ± kphonon
ωin - ωout = ± ωphonon or   Εn - Εout = ± hωphonon

kin ωin
kout ωout

kphonon ωphonon

Create or destroy quanta 
of vibrational energy
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Experimental Measurements of 
Dispersion Curves

• Dispersion curves ω as a function of k are measured 
by inelastic diffraction

• If the atoms are vibrating then diffraction can occur 
with energy loss or gain by scattering particle

• In  principle, can use any particle - neutrons from a 
reactor, X-rays from a synchrotron, He atoms which 
scatter from surfaces, …...
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Experimental Measurements of 
Dispersion Curves

• Neutrons are most useful for vibrations
For λ ~ atomic size, energies ~ vibration energies
BUT requires very large crystals (weak scattering)

• X-ray - only recently has it been possible to have 
enough resolution (meV resolution with KeV X-rays!) 

• “Triple Axis” - rotation of sample and two 
monochrometers

Neutrons or X-rays 
with broad range 
of energies Single crystal

monchrometer

Sample

selected 
energy in

Single crystal
monchrometer

Detector

selected 
energy out
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Experimental Measurements of 
Dispersion Curves

• Alternate approach for Neutrons
Use neutrons from a sudden burst, e.g., at the new 
“spallation” source at Oak Ridge

(Largest science project in the US this century!)
• Measure in and out energies by “time of flight”

Burst of neutrons at measured
time (broad range of energies)

SampleMechanical chopper
selects velocity, i.e.,
energy of neutrons 

Detector

Timing at detector
selects energy of 
scattered neutrons
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More on Phonons as Particles
• Quanta are called phonons, each with energy  hω
• k can be interpreted as “momentum”
• What does this mean?

NOT really momentum - a phonon does not change 
the total momentum of the crystal
But k is “conserved” almost like real momentum -
when a phonon is scattered it transfers “k” plus any 
reciprocal lattice vector, i.e., 

∑ kbefore = ∑ kafter + G
• Example : scattering of particles

kin =  kout + G ± kphonon
where + means a phonon is created, - means a 
phonon is destroyed
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Summary
• Normal modes of harmonic crystal: 

Independent oscillators labeled by wavevector k and 
having frequency ωk

• The relation ωk as a function of k is called a dispersion 
curve - 3N curves for N atoms/cell in 3 dimensions

• Quantized energies (n + 1/2) h ωk

• Can be viewed as particles that can be created or 
destroyed - each carries energy and “momentum”

• “Momentum” conserved modulo any G vector
• Measured directly by inelastic diffraction - difference in 

in and out energies is the quantized phonon energy
• Neutrons, X-rays, …..
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Next time

• Phonon Heat Capacity

• One of the early mysteries solved by quantum 
mechanics - obey Bose-Einstein Statistics

• Density of states of phonons

• Debye and Einstein Models

• (Read Kittel Ch 5)


