Lecture 9 - Crystal Vibrations continued - Phonons |

Phonons I - Crystal Vibrations
Continued
(Kittel Ch. 4)

View of triple axis neutron scattering facility at
National Research Council of Canada
http://neutron.nrc.ca/welcome.htm
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Outline

« Examples in higher dimensions

* How many modes are there?
¢ Quantization and Phonons
« Experimental observation by inelastic scattering

* (Read Kittel Ch 4)
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From last lecture

rgy due to Displacements
* The energy of the crystal changes if the atoms are

displaced. i

¢ Analogous to springs between the atoms

* Suppose there is a spring between each pair of atoms
in the chain. For each spring the change is energy is:
AE :1/2'(: (un+1 — U )2

C ="“spring constant”

a
Notation in Kittel ‘ /\A/\NW\/V\/
AN N ANNNANA
JAVAVAVAY,

v u

n+l

« Note: There are no linear terms if we consider small
changes u from the equilibrium positions
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What determines the “spring constant”
« The energy of the crystal changes if the atoms are
displaced — because the atoms are bound together!

« Example: Atoms in a line with binding of each pair of
atoms that depends of the distance ¢ (| R,,; — R, 1)
» For each bond the change is energy is:
AE = 1/24)” (un+l_u )2 1/ZC(UUH__VU )2

a N :
¢” - /\/\/\AAA/VV\/ C ="“spring constant
derivative
TAWAY \
of ¢ (1) LAVAVA
un un+l

¢« Examples: Coulomb, Van der Waals attraction,
replusive terms, etc. given before
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From last lecture

n waves in 2 or 3 dimensions
* Newton'sLaw: Md?u,/dt2=F,

* General Solution:
u,(t) = Au exp(ik - R, - iot)

Vector dot product - same N\ N\
for all atoms in plane LR % }/ LN
perpendicular to k N\ X \

Consider the motion
to be vibrations of AN . \
planes of atoms “ NN N\ N\

- . . \\ \ \\\ \\ k
L|keachalr_1 in - N .«
one dimension! Physics 60 F 2006 Lect 9 5

Vibration waves in 2 or 3 dimensions
« Easier to see with planes vertical and k vector horizontal

« Then Newton’s equations become
Md2u,/dt2=F, —C“[un1+u 1-2ug]
« Each plane can move

in three directions — d
one longitudinal and
two transverse ot J ‘
T g \
Like one L :F ‘
dimension! ¢ ‘ .
___________ T .
But the effective spring ‘ !
|

constant Ce¢ff is different
for each mode
How do we find Ceff ?
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Central Forces
« For Central Forces the depends only on the distance
between the atoms

The energy per atom is
E= (1/2(1/N) z:nm ¢nm (l Bn N Bmm |)

= EO + (1/4N) 2nm ¢nm " (Al Bn - Bn+m I)2+
The force E,, is along the Upim=Un
direction of the neighbor
The length changes only for
displacements u,.,- U, along
the direction of the neighbor

RO Note angle 6,
depends on
neighbor i
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Geometric factors for Central Forces
» We will consider waves with each atom displaced in

the same direction — for simplicity — then we always
need the force in the direction of the motion F,

° Fsll =- z“i ¢i” [EOS( On ) ] 2 IHI’WH’V‘!- u,

Geometric factor
depends on
neighbor i
Note angle 6,
depends on
neighbor i
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Vibration waves in 2 or 3 dimensions
* Newton’s equations
M d2 gn / dt2 = En = CEﬁ [ un+1 + un-l o2 un]

For each type of motion,

Cef =3, ¢/ [cos( 0,) ]2

where 0, is the angle

between the displacement

vector and the direction

to neighbor i !

e

‘
741
P 1]
L
For one atom per cell T 4
T

e

the resulting dispersion curve is
o= 2 (Ce/ M) Y2 |sin (ka/2)|
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Example — fcc with nearest-neighbor
4 pair potential ¢(f) K

|
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-

~
NP
-
N
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~o

| ¢

Consider waves with k in x direction
Longitudinal motion in x direction
Each atom has 4 neighbors in each of the two neighboring
planes with cos(6)? = %2

CeM=4¢"2 o= 2% (§/"IM )2 |sin (ka/2)|
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Example — fcc with nearest-neighbor
+ pair potential ¢(f)
RN
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Consider waves with k in x direction
Transverse motion in y direction
Each atom has 2 neighbors in each of the two neighboring
planes with cos(0)? = %2 and 2 neighbors with cos(0) = 0
Ceff=2¢/"2 =2 (¢/"/M)2 [sin (ka/2)|

Physics 460 F 2006 Lect 9

11

Waves traveling in x direction in
fcc crystal with one atom per cell

) 3 Acoustic modes
e Each has o ~ k at small k

In this case the two transverse
modes are “degenerate”, i.e.,
they have the same frequency

n/a

In the case of nearest neighbor forces, the longitudinal ®,
is higher than the transverse o, by the factor 22
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Oscillations in general 3 dimensional
crystal with N atoms per cell

3 (N -1) Optic Modes

3 Acoustic modes
Each has  ~ k at small ki

n/a
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Quantization of Vibration waves

e Max Planck - The beginning of quantum
mechanics in 1901

» There were observations and experimental facts
that showed there were serious Issues that
classical mechanics failed to explain

* One was radiation — the laws of classical
mechanics predicted that light radiated from hot
bodies would be more intense for higher
frequency (blue and ultraviolet) — totally wrong!

¢ Planck proposed that light was emitted in
“quanta” —units with energy E=h v =fie

» Planck’s constanth --*h bar” =fi=h/2x

e The birth of quantum mechanics
» Applies to all waves!
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Quantization of Vibration waves

« Each independent harmonic oscillator has quantized

energies:
e,=(n+12)hv=(n+12)fHo

» We can use this here because we have shown that
vibrations in a crystal are independent waves, each
labeled by k (and index for the type of mode - 3N
indices in a 3 dimen. crystal with N atoms per cell)

« Since the energy of an oscillator is 1/2 kinetic and 1/2
potential, the mean square displacement is given by
(L2) M @2 u2 = (1/2) (n + 1/2) ho
where M and u are appropriate to the particular mode
(e.g. total mass for acoustic modes, reduced mass for

optic modes, ....)
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Quantization of Vibration waves
¢ Quanta are called phonons
« Each phonon carries energy o

« For each independent oscillator (i.e., for each
independent wave in a crystal), there can be any
integer number of phonons

« These can be viewed as particles

« They can be detected experimentally as creation or
destruction of quantized particles

« Later we will see they can transport energy just like a
gas of ordinary patrticles (like molecules in a gas).
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Inelastic Scattering and Fourier Analysis
A

\/ d
» The in and out waves have the form:
exp(i K- 1-Tont) and exp(i Koy I - i 0gy)
« For elastic scattering we found that diffraction
occurs only for ki, - Ko, =G
¢ For inelastic scattering the lattice planes are
vibrating and the phonon supplies wavevector
k and frequency o,

Zphonon

phonon
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Inelastic Scattering and Fourier Analysis

¢ Result:
« Inelastic diffraction occurs for
Ki_n - Kout =G+ Kphonon
O = Oy = + ®phonon or En - Eout Sz h(’)phonon
Create or destroy quanta
of vibrational energ

k

=phonon mphonon
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Experimental Measurements of
Dispersion Curves

« Dispersion curves o as a function of k are measured
by inelastic diffraction

« If the atoms are vibrating then diffraction can occur
with energy loss or gain by scattering particle

* In principle, can use any particle - neutrons from a
reactor, X-rays from a synchrotron, He atoms which
scatter from surfaces, ......
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Experimental Measurements of

Dispersion Curves

« Neutrons are most useful for vibrations
For A ~ atomic size, energies ~ vibration energies
BUT requires very large crystals (weak scattering)

¢ X-ray - only recently has it been possible to have
enough resolution (meV resolution with KeV X-rays!)

« “Triple Axis” - rotation of sample and two
monochrometers

| d selected
SEEEE energy out
energy in

Single crystal
monchrometer

Neutrons or X-rays
with broad range

of energies Single crystal

monchrometer ppysics 460 F 2006 Lect 9 20

Experimental Measurements of

Dispersion Curves
« Alternate approach for Neutrons
Use neutrons from a sudden burst, e.g., at the new
“spallation” source at Oak Ridge
(Largest science project in the US this century!)

« Measure in and out energies by “time of flight”
Mechanical chopper
selects velocity, i.e., Timing at detector
energy of neutrons — selects energy of
scattered neutrons

Burst of neutrons at measured
time (broad range of energies)
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More on Phonons as Particles
« Quanta are called phonons, each with energy fio
k can be interpreted as “momentum”

What does this mean?
NOT really momentum - a phonon does not change
the total momentum of the crystal
But k is “conserved” almost like real momentum -
when a phonon is scattered it transfers “k” plus any
reciprocal lattice vector, i.e.,

Z Kbefore = Z Kafter w5 g
Example : scattering of particles

Ki_n = koul w7 g as Kphonon
where + means a phonon is created, - means a
phonon is destroyed

Physics 460 F 2006 Lect 9 22

Summary

* Normal modes of harmonic crystal
Independent oscillators labeled by wavevector k and
having frequency o,

* The relation o, as a function of k is called a dispersion
curve - 3N curves for N atoms/cell in 3 dimensions

* Quantized energies (n + 1/2) h o,

» Can be viewed as particles that can be created or
destroyed - each carries energy and “momentum”

* “Momentum” conserved modulo any G vector

» Measured directly by inelastic diffraction - difference in
in and out energies is the quantized phonon energy

¢ Neutrons, X-rays, .....
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Next time

* Phonon Heat Capacity

* One of the early mysteries solved by quantum
mechanics - obey Bose-Einstein Statistics

« Density of states of phonons
« Debye and Einstein Models

* (Read Kittel Ch 5)
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