Lecture 9 - Crystal Vibrations continued - Phonons I

\section*{lecture}
 Energy due to Displacements

- The energy of the crystal changes if the atoms are displaced.

More later on this

- Analogous to springs between the atoms
- Suppose there is a spring between each pair of atoms in the chain. For each spring the change is energy is:

- Note: There are no linear terms if we consider small changes u from the equilibrium positions

Outline

- Examples in higher dimensions
- How many modes are there?
- Quantization and Phonons
- Experimental observation by inelastic scattering
- (Read Kittel Ch 4)

What determines the "spring constant"

- The energy of the crystal changes if the atoms are displaced - because the atoms are bound together!
- Example: Atoms in a line with binding of each pair of atoms that depends of the distance $\phi\left(\left|\underline{\mathbf{R}}_{n+1}-\underline{\mathbf{R}}_{n}\right|\right)$
- For each bond the change is energy is:

- Examples: Coulomb, Van der Waals attraction, replusive terms, etc. given before

Physics 460 F 2006 Lect 9

Vibration waves in 2 or 3 dimensions

- Easier to see with planes vertical and k vector horizontal
- Then Newton's equations become

$$
M d^{2} \underline{\mathbf{u}}_{n} / \mathrm{dt}^{2}=\underline{\boldsymbol{E}}_{\mathrm{n}}=\text { Ceff }^{\text {en }}\left[\mathbf{u}_{n-1}+\mathbf{u}_{n-1}-2 \mathbf{u}_{\mathrm{n}}\right]
$$

- Each plane can move in three directions one longitudinal and two transverse

But the ----------constant $C^{\text {eff }}$ is different for each mode
How do we find ${ }^{\text {efff }}$?

Lecture 9 - Crystal Vibrations continued - Phonons I

Central Forces

- For Central Forces the depends only on the distance between the atoms
- The energy per atom is

$$
\begin{aligned}
& E=\left(1 / 2(1 / N) \Sigma_{n m} \phi_{\mathrm{nm}}\left(\left|\mathbf{R}_{\mathrm{n}}-\mathbf{R}_{\mathrm{R}+\mathrm{m}}\right|\right)\right. \\
& =\mathrm{E}_{0}+(1 / 4 \mathrm{~N}) \Sigma_{\mathrm{nm}} \phi_{\mathrm{nm}}^{\prime \prime}\left(\overline{\Delta \mid} \underline{\mathbf{R}}_{\mathrm{n}}-\underline{\mathbf{R}}_{\mathrm{n}+\mathrm{m}} \mid\right)^{2}+\ldots
\end{aligned}
$$

- The force F_{n} is along the $\underline{u}_{n+m}-\underline{u}_{n}$ direction of the neighbor
- The length changes only for displacements $\underline{\mathbf{u}}_{\mathrm{n}+\mathrm{m}}-\underline{\mathbf{u}}_{\mathrm{n}}$ along the direction of the neighbor

Vibration waves in 2 or 3 dimensions

- Newton's equations

$$
\mathrm{M} \mathrm{~d}{ }^{2} \underline{\mathbf{u}}_{n} / \mathrm{dt}^{2}=\underline{E}_{\mathrm{n}}=\mathrm{C}^{\text {eff }}\left[\mathbf{u}_{\mathrm{n}+1}+\mathbf{u}_{\mathrm{n}-1}-2 \mathbf{u}_{\mathrm{n}}\right]
$$

For each type of motion, $C^{\text {eff }}=\Sigma_{i} \phi_{i}^{\prime \prime}\left[\cos \left(\theta_{\mathrm{i}}\right)\right]^{2}$ where θ_{i} is the angle between the displacement vector and the direction . to neighbor i

Geometric factors for Central Forces

- We will consider waves with each atom displaced in the same direction - for simplicity - then we always need the force in the direction of the motion $F_{n \|}$

Physics 460 F 2006 Lect 9

Waves traveling in x direction in
fcc crystal with one atom per cell

In the case of nearest neighbor forces, the longitudinal ω_{k} is higher than the transverse ω_{k} by the factor $2^{1 / 2}$

Physics 460 F 2006 Lect 9

Lecture 9 - Crystal Vibrations continued - Phonons I

Oscillations in general 3 dimensional crystal with \mathbf{N} atoms per cell

Quantization of Vibration waves

- Each independent harmonic oscillator has quantized energies:

$$
e_{n}=(n+1 / 2) h \nu=(n+1 / 2) \hbar \omega
$$

- We can use this here because we have shown that vibrations in a crystal are independent waves, each labeled by \mathbf{k} (and index for the type of mode -3 N indices in a 3 dimen. crystal with N atoms per cell)
- Since the energy of an oscillator is $1 / 2$ kinetic and $1 / 2$ potential, the mean square displacement is given by $(1 / 2) M \omega^{2} u^{2}=(1 / 2)(n+1 / 2) h \omega$ where M and u are appropriate to the particular mode (e.g. total mass for acoustic modes, reduced mass for optic modes ,)

- The in and out waves have the form: $\exp \left(\mathrm{i} \underline{k}_{\text {in }} \cdot \mathrm{r}-\mathrm{i} \omega_{\text {in }} \mathrm{t}\right)$ and $\exp \left(\mathrm{i} \underline{\mathbf{k}}_{\text {out }} \cdot \mathbf{r}-\mathrm{i} \omega_{\text {out }} \mathrm{t}\right)$
- For elastic scattering we found that diffraction occurs only for $\underline{\mathbf{k}}_{\text {in }}-\underline{\mathbf{k}}_{\text {out }}=\underline{\mathbf{G}}$
- For inelastic scattering the lattice planes are vibrating and the phonon supplies wavevector $\underline{\mathbf{k}}_{\text {phonon }}$ and frequency $\omega_{\text {phonon }}$

Physics 460 F 2006 Lect 9

Quantization of Vibration waves

- Max Planck - The beginning of quantum mechanics in 1901
- There were observations and experimental facts that showed there were serious issues that classical mechanics failed to explain
- One was radiation - the laws of classical mechanics predicted that light radiated from hot bodies would be more intense for higher frequency (blue and ultraviolet) - totally wrong!
- Planck proposed that light was emitted in "quanta" - units with energy $E=h v=\hbar \omega$
- Planck's constant h --- "h bar" $=\boldsymbol{=}=\mathbf{h} / 2 \pi$
- The birth of quantum mechanics
- Applies to all waves!

Physics 460 F 2006 Lect 9

Quantization of Vibration waves

- Quanta are called phonons
- Each phonon carries energy $ћ \omega$
- For each independent oscillator (i.e., for each independent wave in a crystal), there can be any integer number of phonons
- These can be viewed as particles
- They can be detected experimentally as creation or destruction of quantized particles
- Later we will see they can transport energy just like a gas of ordinary particles (like molecules in a gas).
- Result:
- Inelastic diffraction occurs for

$E_{n}-E_{\text {out }}= \pm \hbar \omega_{\text {phonon }}$ Create or destroy quanta of vibrational energy

Lecture 9 - Crystal Vibrations continued - Phonons I

Experimental Measurements of Dispersion Curves

- Dispersion curves ω as a function of k are measured by inelastic diffraction
- If the atoms are vibrating then diffraction can occur with energy loss or gain by scattering particle
- In principle, can use any particle - neutrons from a reactor, X-rays from a synchrotron, He atoms which scatter from surfaces \qquad

Experimental Measurements of Dispersion Curves

- Alternate approach for Neutrons

Use neutrons from a sudden burst, e.g., at the new "spallation" source at Oak Ridge
(Largest science project in the US this century!)

- Measure in and out energies by "time of flight"

Mechanical chopper selects velocity, i.e. energy of neutrons

Burst of neutrons at measured
time (broad range of energies)

Summary

- Normal modes of harmonic crystal Independent oscillators labeled by wavevector k and having frequency ω_{k}
- The relation ω_{k} as a function of k is called a dispersion curve - 3 N curves for N atoms/cell in 3 dimensions
- Quantized energies $(\mathrm{n}+1 / 2) \mathrm{h} \omega_{\mathrm{k}}$
- Can be viewed as particles that can be created or destroyed - each carries energy and "momentum"
- "Momentum" conserved modulo any $\underline{\mathbf{G}}$ vector
- Measured directly by inelastic diffraction - difference in in and out energies is the quantized phonon energy
- Neutrons, X-rays, \qquad

Experimental Measurements of Dispersion Curves

- Neutrons are most useful for vibrations For $\lambda \sim$ atomic size, energies ~ vibration energies BUT requires very large crystals (weak scattering)
- X-ray - only recently has it been possible to have enough resolution (meV resolution with KeV X-rays!)
- "Triple Axis" - rotation of sample and two

More on Phonons as Particles

- Quanta are called phonons, each with energy $Ћ \omega$
- $\underline{\mathbf{k}}$ can be interpreted as "momentum"
- What does this mean? NOT really momentum - a phonon does not change the total momentum of the crystal But \underline{k} is "conserved" almost like real momentum when a phonon is scattered it transfers " \mathbf{k} " plus any reciprocal lattice vector, i.e.,

$$
\sum \underline{\mathbf{k}}_{\text {before }}=\sum \underline{\mathbf{k}}_{\text {after }}+\underline{\mathbf{G}}
$$

- Example : scattering of particles

$$
\underline{\mathbf{k}}_{\text {in }}=\mathbf{k}_{\text {out }}+\underline{\mathbf{G}} \pm \mathbf{k}_{\text {phonon }}
$$

where + meeans a phonon is created, - means a phonon is destroyed

Next time

- Phonon Heat Capacity
- One of the early mysteries solved by quantum mechanics - obey Bose-Einstein Statistics
- Density of states of phonons
- Debye and Einstein Models
- (Read Kittel Ch 5)

