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Lecture 15:  Energy Bands for Electrons
in Crystals - continued 

(Kittel Ch. 7)
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Outline
• Electrons in crystals 

Electrons in a periodic potential
Bloch Theorem

• Quantitative calculations for nearly free electrons 
Equivalent to Bragg diffraction
Energy Bands and standing waves at the 

Brillouin Zone Boundary 
Energy gaps

• Energy Bands in three dimensions

• Metals vs insulators - simple arguments

• (Read Kittel Ch 7)
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Schrodinger Equation 
• Basic equation of Quantum Mechanics

where
m = mass of particle
V( r ) = potential energy at point  r

2 = (d2/dx2 + d2/dy2 + d2/dz2)
E = eigenvalue = energy of quantum state
Ψ ( r ) = wavefunction

n ( r )  = | Ψ ( r ) |2 = probability density 

∆

•Key Point for electrons in a crystal: The potential
V(r ) has the periodicity of the crystal

From last time

[ - (h2/2m)  2 + V(r) ] Ψ (r) =  E Ψ (r) ∆
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Representing V as a periodic function 
• We have seen (Lecture 4; Kittel Ch 2) that any 

periodic function can be written as Fourier series
f(r) = ΣG fG exp( i G . r)  

where the G ‘s are reciprocal lattice vectors
G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3

• Check:  A periodic function satisfies 
f(r) =  f(r + T) where T is any translation
T(n1,n2,…) = n1 a1 + n2 a2 + n3 a3

where the n’s are integers 

• Thus    V(r) = ΣG VG exp( i G . r)
• And      V(r) = real  ⇒ VG = V*-G

• If the crystal is symmetric (V(r) = V(-r)), then VG = V-G
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Schrodinger Equation - Again 
• In a periodic crystal

[               + ΣG VG exp( i G . r) ] Ψ ( r ) =  E Ψ ( r )

• Now expand Ψ ( r ) = Σk ck exp( i k . r)

• Note we do NOT assume Ψ is periodic! It is a wave!

• What is k?  
Just as before for electrons in a box, we assume 
Ψ ( r ) is periodic in a large box (L x L x L) which leads 
to

k =  ± m (2π/L), m = 0,1,.. 

- (h2/2m)  2∆
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Schrodinger Equation - Continued 
• Then the Schrodinger Eq.beomes:

Σk ck [λ k exp( i k . r) + ΣG VG exp( i (k + G). r) ] 
=  E Σk ck exp( i k . r)

where
λ k = 

• By re-labeling the sums, this can be written 
Σk { [λ k - E ] ck + ΣG VG ck-G } exp( i k . r) = 0

• Equating terms with the same r dependence on the 
two sides on the equation, we find what Kittel calls the 
“Central Equation”

[λ k - E ] ck + ΣG VG ck-G = 0

(h2/2m) | k |2
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“Central Equation” for electron bands 
• What is the interpretation of the equation:

[λ k - E ] ck + ΣG VG ck-G = 0

• If VG = 0 (no potential - free electrons) then each k is 
independent and each wavefunction is 

Ψk ( r ) = ck exp( i k . r) ; E = λ k = 

• If VG ≠ 0, then each k is mixed with k - G where G is 
any reciprocal lattice vector  -- the solution is 

Ψk ( r ) = ΣG ck-G exp( i (k - G). r)

Yet to be determined 

(h2/2m) | k |2
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Bloch Theorem - I 
• One of the most important ideas in the course!
• In a general crystal, the wave function for an electron 

has the form:
Ψk ( r ) = ΣG ck-G exp( i (k - G). r)

which can be written

Ψk ( r ) = exp( i k . r) uk ( r ) 

where uk ( r ) is the periodic function
uk ( r ) = ΣG ck-G exp( - i G . r)
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Bloch Theorem - II 
• The general form is 

Ψk
n ( r ) = exp( i k . r) uk

n ( r ) 

where uk
n ( r ) is a periodic function. Here n labels 

different bands 

• Key Points:
1) Each state is labeled by a wave vector k
2) k can be restricted to the first Brillouin Zone
This may be seen since 
Ψk+G’ ( r ) = exp( i (k + G’). r) u k+G’ ( r ) 
= exp( i k . r) u’k( r )
where u’k ( r ) = exp( i G. r) u k+G’ ( r ) is just another 
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Bloch Theorem - III 
• Thus a wavefunction in a crystal can always be written 

Ψk
n ( r ) = exp( i k . r) uk

n ( r ) 

where:     uk
n ( r ) is a periodic function

n labels different bands 
k is restricted to the first Brillouin Zone

• In limit of large system 
k becomes continuous
n is discrete index:  n = 1,2,3, ….
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Bloch Theorem - IV 
• “Energy Bands” for electrons in crystals
• Recall the “Central Equation”

[λ k - Ek
n ] ck + ΣG VG ck-G = 0

• The eigenvalues of the equation are the energies
Ek

n which depend upon the wavevector k and the 
index n:     

Ek
n are the “energy bands”

n labels different bands 
k is restricted to the first Brillouin Zone

• In limit of large system 
Ek

n fl En(k) becomes a continuous function of k
n is discrete index:  n = 1,2,3, ….
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Solving “Central Equation” - I
• Simple cases where we can solve

[λ k - E ] ck + ΣG VG ck-G = 0

• Consider the case where the potential VG is very 
weak. Then we can find an accurate approximate 
solution. This is called the “nearly-free-electron”
approximation.

• For k near BZ boundary, the wave exp( i k . r) is 
mixed strongly with exp( i (k - G). r), where  G is the 
one (and only one) vector that leads to | k | ~ | k - G |

• Let V = VG = V-G for that G
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Solving “Central Equation” - II
• Leads to two coupled equations

[λ k - E ] ck + V ck-G = 0

[λ k-G - E ] ck-G + V ck = 0

• or [λ k - E ]     V

V [λ k-G - E ]
• Solution

E± =  (1/2) (λ k + λ k-G )  ± (1/2) [(λ k - λ k-G )2 + V 2] 1/2

and
ck-G = [( λ k - E)/V ] ck

= 0
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Example in one dimension
• A 1-dimensional crystal has a periodic potential 

V(x) = ΣG VG exp(iGx)

• In the nearly free electron approximation, we assume 
the potential is very weak.  For a state near a zone 
boundary k ~ π/a, we consider only

V = VG, where G = 2π/a 
(and we neglect the other G’s)  

0 La
Atoms - attractive

(negative) potential
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Example in one dimension

0 La
Atoms - attractive

(negative) potential

• At the zone boundary:  k = π/a,    k-G = -π/a and
λ k = λ k-G =         

• From a previous slide, the energies are given by
E± =  (1/2) (λ k + λ k-G )  ± (1/2) [(λ k - λ k-G )2 + V 2] 1/2

• Solution for k = π/a:  E± =  λ k ± (1/2) V
• With eigenvectors ck-G = [( λ k - E)/V ] ck = ± ck

• This means that
Ψ (x) = Σk ck exp(ikx) = ck [exp(ikx) ± exp(i(k-G)x) ] 

= ck [ exp(iπx/a) ± exp(-iπx/a) ] 

(h2/2m) (π/a)2
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Interpretation of Standing waves at 
Brillouin Zone boundary 

• Bragg scattering at k = π/a leads to the two possible combinations 
of the right and left going waves:

Ψ+(x) = exp( i πx/a) + exp(-i πx/a) = 2 cos(πx/a)
Ψ−(x) = exp( i πx/a) - exp(-i πx/a) = 2i sin(πx/a),

with density
|Ψ+(x)|2 = 4 cos2(πx/a)     and |Ψ−(x)|2 = 4 sin2(πx/a)

0 L

a
Atoms - attractive

(negative) potential

|Ψ+(x)|2 - high density at atoms
low energy

Ψ−(x)|2 - low density at atoms
high energy
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Nearly Free Electrons on a line
• Bands changed greatly only at zone boundary  

Standing wave at zone boundary
Energy gap -- energies at which  no waves can travel 
through crystal

Energy
Gap
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gy

Standing wave with high 
density at atom positions

fi low energy
Far from BZ boundary

wavefunctions and energies
approach free electron values 

E−

E+

Standing wave with low 
density at atom positions

fi high energy

V
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These conclusions also apply in 
general in 2 and 3 dimensions

• In ALL crystals states at the boundary of the Brillouin
Zone are standing waves

• For each state k at the BZ 
boundary, there is always
an equivalent state k-G
where G is one of the vectors 
of the reciprocal lattice

• This happens in ALL crystals
since the BZ boundaries are 
defined by |k .G| = G2/2, 
so that |(k-G) .G| = G2/2 

b2
k

Brillouin Zone

b1

G

k-G
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How to apply the nearly-free electron 
aproximation in general crystals

• First find free electron bands plotted in BZ

• The energy is ALWAYS E (K) =
but now we “reduce” K to BZ, i.e., we define
the “reduced” k by 

K = k + G or    k = K - G 

• Then add effects of potential

(h2/2m) | K |2
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Free Electrons - 1 d

E

k
π/a−π/a 0

G

K2

(k - 2π/a)2
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Free Electrons - 3 d - simple cubic

E

kxπ/a−π/a 0

Gx

K2

(kx - 2π/a)2

(kx )2 + (2π/a)2

Gy or Gz
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Nearly Free Electrons - 3d - schematic

E

kxπ/a−π/a 0
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Summary so far
• We have solved the “Central Equation” in the 

“nearly-free electron approximation”
• The results apply to all types of crystals  but we 

have assumed the potential is “weak” which is not 
always true

• Which conclusions will ALWAYS apply in all 
crystals? 

The Bloch Theorem
Standing waves and gaps at the BZ boundary
Continuous curves (“energy bands”) E

(Discussion in class)

• Why are these results important? 
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Metals vs Insulators 
• How can  we use the results so far to determine 

which crystals will be metals?  Which can be 
insulators?
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Metals vs Insulators 

0 |k|

EF

E

Metal –
the Fermi Energy
EF is in the band

“partially filled band”

0 |k|

EF

E

Insulator –
the Fermi Energy

EF is in the band gap
“filled band”

filled
empty

filled

empty

From before
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Metals vs Insulators 
• How can we know when the Fermi energy will be in 

the band?  In the gap?  
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Sums and Integrals over k points 
• We often need to sum or integrate over k to find total 

quantities, for example the total number of filled states 
in the bands.     

• We can use idea of periodic boundary conditions on 
box of size L x L x L 
Exactly the same as for phonons, electrons in a box,...

• Volume per k point = (2π/L)3

• Total number of k points in in BZ 
Nk-point = VBZ /(2π /L)3 = (2π/a)3(L/2π)3 = (L/a)3 = Ncell

• Rules:
Nk-point = Ncell
(2π/L)3 Σk → ∫ dk or    (1/ Nk-point ) Σk → (1/ VBZ) ∫ dk

Physics 460 F 2006  Lect 15 28

Sums and Integrals over k points 
• Important conclusion from previous slide:
• The number of k points in a band equals the number 

of cells in the crystal
Nk-point = Ncell

• This may seem meaningless for an infinite crystal, but 
it is correct if it is understood properly:  
In the limit of a large crystal, the surface effects 
become negligible.  The states approach a continuum 
with the density of points in k space given by:

(2π/L)3 Σk → ∫ dk or    (1/ Nk-point ) Σk → (1/ VBZ) ∫ dk
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Metals vs Insulators 
• Important Conclusion – one of the most important 

in the course!  
• The energies of the electron states are “bands” En(k).  

For each band (n = 1,2, …) En(k) varies continuously 
as a function of k inside the BZ.

• At the boundary of the BZ  the states are standing 
waves. There are energy gaps and the group velocity 
dEn/dk =0 at the boundary.

• Electrons obey the exclusion principle. 2 electrons per 
primitive cell of the crystal fill a band. Any additional 
electrons must go into the next band, and so forth.

• An odd number of electrons per primitive cell ALWAYS leads 
to a partially filled band – a METAL 
• An even number MAY lead to an insulator – see later
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Metals vs Insulators 
• An even number of electrons per cell leads to an 

insulator if the Fermi energy is in a gap everywhere in 
the BZ
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Metals vs Insulators 
• An even number of electrons per cell leads to an 

insulator if the Fermi energy is in a gap everywhere in 
the BZ

• Another possibility is a semimetal

E

kx π/a−π/a 0 0 |k|

Different direction of k

Fermi Energy

Semi-metal
E
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Metals vs Insulators 
• A band holds two electrons per cell of the crystal 
• Therefore an crystal with an odd number of electrons 

per cell MUST* be a metal!
Partially filled bands lead to Fermi energy and 

“Fermi surface” in k space
Conductivity because states can change and 

scatter when electric field is applied

• A crystal with an even number of electrons per cell 
MAY be an insulator!

Electrons “frozen”
Gap in energy for any excitations of electrons

• *caveat later
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Metals vs Insulators 
• Examples 
• Na – 1 valence electron/atom = 1 valence electron/cell

• Cu – 10 d electrons + 1 s electron in the atom –
discuss in class

• NaCl – 1 + 7 = 8  valence electrons/cell

• Xe - 8 valence electrons/atom 

• Solid H2 - discuss in class 

• Si - 4 valence electrons/atom - discuss in class 
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Summary
• “Central Equation” – General for ALL crystals
• We solved the problem in the “nearly-free electron 

approximation” where we assume the potential is 
“weak”

• Some results apply to ALL types of crystals:  
The Bloch Theorem
Standing waves and gaps at the BZ boundary
Continuous curves (“energy bands”) En(k)

• We can predict that some materials most be 
metals, and other materials can be insulators --
simply by counting electrons! 
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Next time

• Semiconductors

• What is a semiconductor?

• We have established that there can be gaps
and filled bands – from this starting point we can 
understand how the electrons in some materials 
will have interesting, large changes with 
temperature, “doping”, electric fields, . . . 

• (Read Kittel Ch 8)


