Lecture 15 - Energy Bands for Electrons - continued

Lecture 15: Energy Bands for Electrons
in Crystals - continued

(Kittel Ch. 7)
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Outline
e Electrons in crystals
Electrons in a periodic potential
Bloch Theorem

¢ Quantitative calculations for nearly free electrons
Equivalent to Bragg diffraction
Energy Bands and standing waves at the
Brillouin Zone Boundary
Energy gaps

* Energy Bands in three dimensions
* Metals vs insulators - simple arguments

* (Read Kittel Ch 7)
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From last ti i -
om N b rodinger Equation

 Basic equation of Quantum Mechanics
[- (f2m)v2 + V(O 1Y (O = EY (O

where
m = mass of particle
V(r ) = potential energy at point r
V2" = (d2/dx2 + d2/dy? + d2/dz?)
E = eigenvalue = energy of quantum state
Y (r) = wavefunction
n(r) =|¥(r)|? = probability density

*Key Point for electrons in a crystal: The potential
V(r ) has the periodicity of the crystal
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Representing V as a periodic function
* We have seen (Lecture 4; Kittel Ch 2) that any
periodic function can be written as Fourier series
f(r) = Zgfeexp(i G - 1)
where the G ‘s are reciprocal lattice vectors
G(my,m,,...)=my by + m, b, + m; by
» Check: A periodic function satisfies
f(r) = f(r + T) where T is any translation
T(nyny.)=nga +n, @+ Ny
where the n’s are integers

e Thus V() =g Vgexp(iG-r)
* And  V(r)=real = Vg=V*g
If the crystal is symmetric (V(r) = V(-1)), then V=V ¢

Physics 460 F 2006 Lect 15

Schrodinger Equation - Again
In a periodic crystal
[-(h22m)v2 + 2, Vgexp(iG-D)]1¥ (r)= EW¥(r)

* Nowexpand ¥ (r) =%, c exp(ik-r)
* Note we do NOT assume ¥ is periodic! It is a wave!

¢ What is k?
Just as befoge for electrons in a box, we assume
W (r)is periodic in a large box (L x L x L) which leads
to
k= +m (2n/L), m=0,1,..
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Schrodinger Equation - Continued
e Then the Schrodinger Eq.beomes:
ZKCK[KEeXp(iK‘ rn+ ZQVQEXp( ik+G)n]
= Ex ceexp(ik 1)
where o
Ay = (A22m) |k |2
By re-labeling the sums, this can be written
ZK{[M-E]CK +Z§VG_c@}exp(iK-[)=0

Equating terms with the same r dependence on the
two sides on the equation, we find what Kittel calls the
“Central Equation”

[kK—E]c£+2§VQcﬁ=O
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Lecture 15 - Energy Bands for Electrons - continued

“Central Equation” for electron bands
« What is the interpretation of the equation:

[xk-E]cK +2Z5V5Cg =0

* If V5 =0 (no potential - free electrons) then each k is
independent and each wavefunction is

W, (r)=ceexp(ik-r);E=%,= (h22m) |k |2

* If Vg0, then each k is mixed with k - G where G is
any reciprocal lattice vector -- the solution is
¥ (1) =2gcgexp(i(k-G) 1)
N
Yet to be determined
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Bloch Theorem - |
* One of the most important ideas in the course!

* In a general crystal, the wave function for an electron
has the form:

W, (r)=2gccexp(i(k-G)r)

which can be written

Y (r)=exp(ik-ru(r)

where u, (1) is the periodic function
U (r)=2gccexp(-iG-r)
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Bloch Theorem - 11
e The generalform is

P (r) =exp(ik-run(r)

where u," (1) is a periodic function. Here n labels
different bands

* Key Points:
1) Each state is labeled by a wave vector k
2) k can be restricted to the first Brillouin Zone
This may be seen since

Yo (L) =exp(ik +G)- D) U e (1)
=exp(ik-r)uy(r)
where u’, (1) =exp(iG- 1)U () is]justanother
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Bloch Theorem - 111

» Thus a wavefunction in a crystal can always be written
P (r)=exp(ik-rju"(r)

where: u" (r) is a periodic function
n labels different bands
Kk is restricted to the first Brillouin Zone

« In limit of large system
k becomes continuous
n is discrete index: n=1,2,3, ....
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Bloch Theorem - IV

« “Energy Bands” for electrons in crystals
¢ Recall the “Central Equation”

[kk-EK”]cK +25VgCg =0

* The eigenvalues of the equation are the energies
E, " which depend upon the wavevector k and the
index n:
E," are the “energy bands”
n labels different bands
Kk is restricted to the first Brillouin Zone

« In limit of large system
E," = E"(k) becomes a continuous function of k
nis discrete index: n=1,2,3, ....
Physics 460 F 2006 Lect 15 11

Solving “Central Equation” - |
» Simple cases where we can solve

[kK—E]c£+2§VQcﬁ=O

» Consider the case where the potential V is very
weak. Then we can find an accurate approximate
solution. This is called the “nearly-free-electron”
approximation.

» For k near BZ boundary, the wave exp(ik -r)is
mixed strongly with exp(i (k - G)- r), where G is the
one (and only one) vector that leads to |k | ~ | k - G |

s LetV=Vg=VforthatG
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Lecture 15 - Energy Bands for Electrons - continued

Solving “Central Equation” - 11
¢ Leads to two coupled equations

[A-Elc +Vee =0

[c-ElcegtVe =0

e or A -E \Y
Dy -E] 0
\% [Ag-E]
¢ Solution
Ef= (U2) (A +hyg) T2 [(A -2 yg)? +V L2
and N o T
Ceg = [(A-E)V]cy
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Example in one dimension

* Atthe zone boundary: k=n/a, k-G=-r/a and
A=Ay = (h22m) (n/a)?
» From a previous slide, the energies are given by
Ef= (1/2) My +hyg) FW2)[(Ay-ryg)? +V2 12
* Solution fork =n/a: E*= L, + (1/2) V
+ With eigenvectors ¢, =[(A,-E)/V]c =%cy
* This means that
¥ (x) = Z, ¢ exp(ikx) = ¢, [exp(ikx) + exp(i(k-G)x) ]
= ¢, [ exp(inx/a) = exp(-inx/a) ]

O O
0 a L
Atoms - attractive

(negative) potential
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Example in one dimension
» A l-dimensional crystal has a periodic potential
V(x) = Zg Vg exp(iGx)

Q O
0 A L
Atoms - attractive

(negative) potential

« In the nearly free electron approximation, we assume
the potential is very weak. For a state near a zone
boundary k ~ n/a, we consider only

V = Vg, where G = 2n/a
(and we neglect the other G’s)
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Interpretation of Standing waves at
Brillouin Zone boundary

« Bragg scattering at k = n/a leads to the two possible combinations
of the right and left going waves:
W+(x) = exp( i mx/a) + exp(-i tx/a) = 2 cos(nx/a)
Y-(x) = exp( i nx/a) - exp(-i mx/a) = 2i sin(nx/a),
with density
[P+(x)[? = 4 cos?(nx/a) and  |¥-(x)[?> = 4 sin?(nx/a)

[¥+(x)|2 - high density at atoms '¥~(x)|* - low density at atoms
low energy high energy

Atoms - attractive
a (negative) potential
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Nearly Free Electrons on a line

« Bands changed greatly only at zone boundary
Standing wave at zone boundary
Energy gap -- energies at which no waves can travel

throth crystal‘ , Standing wave with low

: E- idensity at atom positions
// \.\/ = high energy

i | . {___Energy

? t !

T Gap

Energy

Standing wave with high
i density at atom positions

Far from BZ boundélry
= low energy

wavefunctions pnd energies
approach free electron values

k
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These conclusions also apply in
general in 2 and 3 dimensions

e In ALL crystals states at the boundary of the Brillouin
Zone are standing waves °

» For each state k at the BZ L4
boundary, there is always
an equivalent state k-G
where G is one of the vectors
of the reciprocal lattice

This happens in ALL crystals

since the BZ boundaries are O B;“'““‘" Zoge

defined by |k -G| = G%/2, °
so that |(k-G) -G| = G%/2
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Lecture 15 - Energy Bands for Electrons - continued

How to apply the nearly-free electron
aproximation in general crystals
« First find free electron bands plotted in BZ
« The energy is ALWAYS E (K) = (h%2m) | K [2
but now we “reduce” K to BZ, i.e., we define

the “reduced” k by
K=k+G or k=K-G

* Then add effects of potential
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Free Electrons-1d

(k - 2n/a)?

. G

,” K2

k

m/a
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Free Electrons - 3 d - simple cubic
(k, - 2m/a)?

(ky)? + (2m/a)?

X

' G
: Gyor G,

it K2
: : kx
-n/a 0 n/a
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Nearly Free Electrons - 3d - schematic

Vv

H H kx
—-m/a 0 m/a
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Summary so far

* We have solved the “Central Equation” in the
“nearly-free electron approximation”

* The results apply to all types of crystals butwe
have assumed the potential is “weak” which is not
always true

e Which conclusions will ALWAYS apply in all
crystals?
The Bloch Theorem
Standing waves and gaps at the BZ boundary
Continuous curves (“energy bands”) E
(Discussion in class)

e Why are these results important?

Physics 460 F 2006 Lect 15 23

Metals vs Insulators

* How can we use the results so far to determine
which crystals will be metals? Which can be
insulators?
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Lecture 15 - Energy Bands for Electrons - continued

Fombetore MIETAlS VS INsulators

empty

filled

filled

Metal — (K] 0 K
the Fermi Energy Insulator —
Egis in the band the Fermi Energy

“partially filled band” Egis in the band gap

“filled band”
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Metals vs Insulators

* How can we know when the Fermi energy will be in
the band? In the gap?
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Sums and Integrals over k points
« We often need to sum or integrate over k to find total
quantities, for example the total number of filled states
in the bands.

* We can use idea of periodic boundary conditions on
box of size L x L x L
Exactly the same as for phonons, electrons in a box,...

« Volume per k point = (2r/L)3
¢ Total number of k points in in BZ

Nicpain = Vz /(2 IL)? = (2nfa)¥(L/2n)® = (L/a)? = Negy
¢ Rules:

Nk-poinl = Ncell
@nlL)* 5, > [dk or (1 Ny o) T = (1 Vi) [ dk
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Sums and Integrals over k points

* Important conclusion from previous slide:

e The number of k points in a band equals the number
of cells in the crystal
Nk»pomt =N

cell

» This may seem meaningless for an infinite crystal, but
it is correct if it is understood properly:
In the limit of a large crystal, the surface effects
become negligible. The states approach a continuum
with the density of points in k space given by:
@u/L3 %, —>[dk or (1 Ny o) T > (1/ Vi) [ dk
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Metals vs Insulators

e Important Conclusion —one of the most important
in the coursel!

¢ The energies of the electron states are “bands” E"(k).
For each band (n = 1,2, ...) E"(k) varies continuously
as a function of k inside the BZ.

« At the boundary of the BZ the states are standing
waves. There are energy gaps and the group velocity
dE"/dk =0 at the boundary.

¢ Electrons obey the exclusion principle. 2 electrons per
primitive cell of the crystal fill a band. Any additional
electrons must go into the next band, and so forth.
* An odd number of electrons per primitive cell ALWAYS leads
to a partially filled band —a METAL
* An even number MAY lead to an insulator — see later
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Metals vs Insulators
» An even number of electrons per cell leads to an
insulator if the Fermi energy is in a gap everywhere in
the BZ

empty

N
filled /

o Ik
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Lecture 15 - Energy Bands for Electrons - continued

Metals vs Insulators
An even number of electrons per cell leads to an
iﬂsulator if the Fermi energy is in a gap everywhere in
the BZ

Another possibility is a semimetal ) )
‘ 1 . Different direction of k

. E
E;emrm:etal

J \.\ Fermi|lEnergy
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Metals vs Insulators
A band holds two electrons per cell of the crystal

Therefore an crystal with an odd number of electrons
per cell MUST* be a metal!

Partially filled bands lead to Fermi energy and
“Fermi surface” in k space

Conductivity because states can change and
scatter when electric field is applied

A crystal with an even number of electrons per cell
MAY be an insulator!

Electrons “frozen”

Gap in energy for any excitations of electrons

*caveat later
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Metals vs Insulators
Examples

Na — 1 valence electron/atom = 1 valence electron/cell

Cu —10d electrons + 1 s electron in the atom —
discuss in class

NaCl -1 + 7 = 8 valence electrons/cell
Xe - 8 valence electrons/atom
Solid H, - discuss in class

Si - 4 valence electrons/atom - discuss in class
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Summary

“Central Equation” — General for ALL crystals

We solved the problem in the “nearly-free electron
approximation” where we assume the potential is
“weak”

Some results apply to ALL types of crystals:
The Bloch Theorem
Standing waves and gaps at the BZ boundary
Continuous curves (“energy bands”) E"(k)

We can predict that some materials most be
metals, and other materials can be insulators --
simply by counting electrons!
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Next time

Semiconductors
What is a semiconductor?

We have established that there can be gaps

and filled bands — from this starting point we can
understand how the electrons in some materials
will have interesting, large changes with
temperature, “doping”, electric fields, . . .

(Read Kittel Ch 8)
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