

Outline

- Electron in a box (again)
- · Examples of nanostructures

Created by Applied Voltages
Patterned metal gates on semiconductors Create "dots" that confine electrons

Clusters of atoms, e.g., Si₂₉H₃₆, CdSe clusters Clusters of atoms embedded in an insulator e,g., Si clusters in SiO₂ Buckyballs, nanotubes, . .

- · How does one study nanosystems?
- · What are novel properties?
- · See Kittel Ch 18 and added material in the lecture

Physics 460 F 2006 Lect 24

Probes to determine stuctures

- Transmission electron microscope (TEM)
- · Scanning electron microscope (SEM)
- Scannng tunneling microscope (STM) more later

Figures in Kittel Ch 18

Physics 460 F 2006 Lect 24

How small – How large?

- "Nano" means size ~ nm
- · Is this the relevant scale for "nano effects"?
 - · Important changes in chemistry, mechanical properties
 - · Electronic and optical properties
 - Magnetism (later)
 - · Superconductivity (later)
- Changes in chemistry, mechanical properties
 - Expect large changes if a large fraction of the atoms are on the
- Electronic and optical properties
 - · Changes due to the importance of surface atoms
 - Quantum "size effects" can be very large and significant \

Physics 460 F 2006 Lect 24

"Surface" vs "Bulk" in Nanosystems

- Consider atomic "clusters" with ~ 1 nm
- Between molecules (well-defined numbers and types of atoms - well-defined structures) and condensed matter ("bulk" properties are characteristic of the "bulk" independent of the size – surface effects separate)
- Expect large changes if a large fraction of the atoms are on the surface
- Typical atomic size ~ 0.3 nm
- Consider a sphere volume 4πR³/3, surface area $4\pi R^2$ --- Rough estimates
 - R = 3 nm \Rightarrow ~ 10³ atoms 10² on the surface 10%
 - R = 1.2 nm \Rightarrow ~ 64 atoms 16 on the surface 25%
 - $R = 0.9 \text{ nm} \Rightarrow \sim 27 \text{ atoms } 9 \text{ on the surface} 33\%$

Physics 460 F 2006 Lect 24

Ouantum Size Effects

- · We can make estimates using the "electron in a box" model of the previous lecture
- The key quantity that determines the quantum effects is the mass
- When can we use m = m_{electron}?
 In typical materials (metals like Na, Cu, ... the intrinsic electrons in semiconductors....
- · When do we use the effective mass m* For the added electrons or holes in a semiconductor

Physics 460 F 2006 Lect 24

Special Presentation Prof. Munir Nayfeh

Physics 460 F 2006 Lect 24 11

One dimensional nanowires The motion of the electrons is exactly like the "electron in a box" problems discussed in Kittel, ch. 6 Except the electrons have an effective mass m* And in this case, the box has length L in two directions (the y and z directions) and large in the x direction (L_x very large) Key Point: For ALL "electron in a box" problems, the energy is given by E (k) = (f²/2m) (k_x² + k_y² + k_z²)

For this case $m = m^*$ and $k_v = (\pi/L) n_v$, $k_z = (\pi/L) n_z$

Physics 460 F 2006 Lect 24

Summary

- · Examples of nanostructures

• Created by Applied Voltages
Patterned metal gates on semiconductors Create "dots" that confine electrons

Created by material structures

Clusters of atoms, e.g., Si₂₉H₃₆, CdSe clusters Clusters of atoms embedded in an insulator e,g., Si clusters in SiO₂ Buckyballs, nanotubes, . . .

- · How does one study nanosystems?
- · What are novel properties?
- See Kittel Ch 18 and added material in the lecture

Physics 460 F 2006 Lect 24

Next time

• Metals - start superconductivity

Physics 460 F 2006 Lect 24