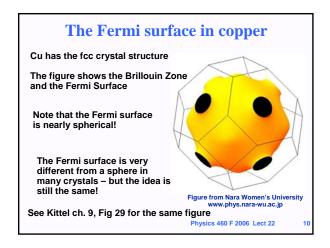


Typical values for electrons			
Here we count only valence electrons (see Kittel table)			
Element	N _{elec} /atom	E_F	$T_F = E_F/k_B$
Li	1	4.7 eV	5.5 x10 ⁴ K
Na	1	3.23eV	3.75 x10⁴ K
Al	3	11.6 eV	13.5 x10 ⁴ K
Conclusion: For typical metals the Fermi energy (or the Fermi temperature) is much greater than ordinary temperatures			
Physics 460 F 2006 Lect 22 6			


Heat Capacity for Electrons • Just as for phonons the definition of heat capacity is C = dU/dT where U = total internal energy • For T < T_F = E_F/k_B it is easy to see that roughly U ~ U0 + N_{elec} (T/T_F) k_B T so that C = dU/dT ~ N_{elec} k_B (T/T_F) 1 Chemical potential for electrons D(E) Physics 460 F 2006 Lect 22 7

What about a real metal?

- In a crystal the energies are not $E = (h^2/2m) k^2$
- Instead the energy is E_n(k), where k is the wavevector in the Brillouin Zone, and n = 1,2,3,... labels the bands
- The energy E_n(k) is different for k in different directions
- The concepts still apply
 The states are filled for $E_n(\mathbf{k}) < E_{Fermi}$
 The states are empty for $E_n(\mathbf{k}) > E_{Fermi}$
- This defines the Fermi surface: the surface in k-space where $E_n(\mathbf{k}) < E_{\text{Fermi}}$ the boundary between filled and empty states

Physics 460 F 2006 Lect 22

Heat capacity

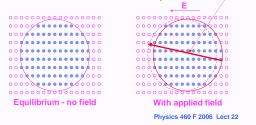
- Experimental results for metals $C/T = \gamma + A T^2 + ...$
- It is most informative to find the ratio γ / γ (free) where γ (free) = $(\pi^2/2)$ ($N_{\rm elec}/E_{\rm F}$) $k_{\rm B}^2$ is the free electron gas result. Equivalently since $E_{\rm F} \propto 1/m$, we can consider the ratio γ / γ (free) = m(free)/ $m_{\rm th}^*$, where $m_{\rm th}^*$ is an thermal effective mass for electrons in the metal

 $\begin{array}{lll} \text{Metal} & & \text{m}_{\text{th}}{}^{*}/\,\text{m(free)} \\ \text{Li} & & 2.18 \\ \text{Na} & & 1.26 \\ \text{K} & & 1.25 \\ \text{Al} & & 1.48 \\ \text{Cu} & & 1.38 \\ \end{array}$

• m_{th}* close to m(free) is the "good", "simple metals" !

Physics 460 F 2006 Lect 22

Electrical Conductivity & Ohm's Law


- Consider electrons in an external field E. They experience a force F = -eE
- Now $F = dp/dt = \hbar dk/dt$, since $p = \hbar k$
- Thus in the presence of an electric field all the electrons accelerate and the k points shift, i.e., the entire Fermi surface shifts

Equilibrium - no field

The same ideas apply to real metals with non-spherical Fermi surfaces

Electrical Conductivity & Ohm's Law · What limits the acceleration of the electrons?

- Scattering increases as the electrons deviate more from equilibrium
- After field is applied a new equilibrium results as a balance between acceleration by field and scattering

Electrical Conductivity and Resistivity

- The conductivity σ is defined by $j = \sigma E$, where i = current density
- How to find σ?
- From before $F = dp/dt = m dv/dt = \hbar dk/dt$
- Equilibrium is established when the rate that k increases due to E equals the rate of decrease due to scattering, then dk/dt = 0
- If we define a scattering time τ and scattering rate $1/\tau$ \hat{h} (dk/dt + k / τ) = F= q E (q = charge)
- Now j = n q v (where n = density) so that $j = n q (h k/m) = (n q^2/m) \tau E$
- \Rightarrow $\sigma = (n q^2/m) \tau$ • Resistance: ρ = 1/ σ \propto m/(n q^2 τ)

 Physics 460 F 2006 Lect 22

Scattering mechanisms

· Impurities - wrong atoms, missing atoms, extra atoms,

Proportional to concentration

• Lattice vibrations - atoms out of their ideal places

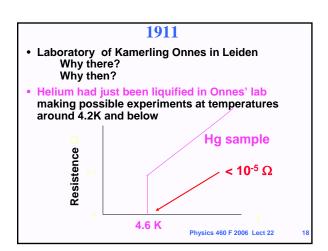
Proportional to mean square displacement

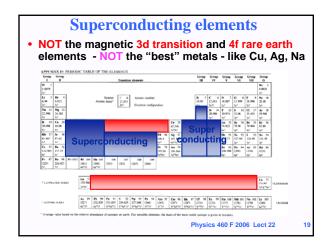
• (Really these conclusions depend upon ideas from the next section that there is no scattering in a perfect crystal.)

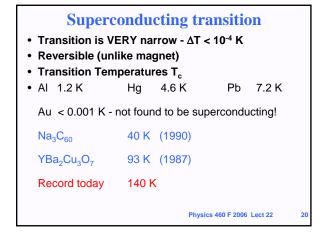
Physics 460 F 2006 Lect 22

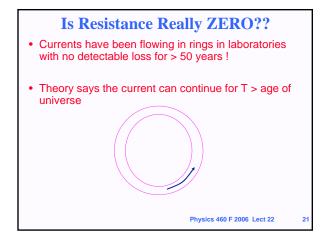
Electrical Resistivity

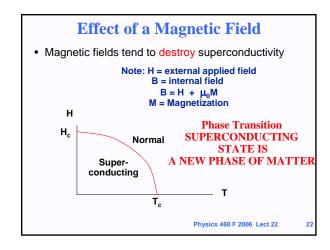
• Resistivity ρ is due to scattering: Scattering rate inversely proportional to scattering time t

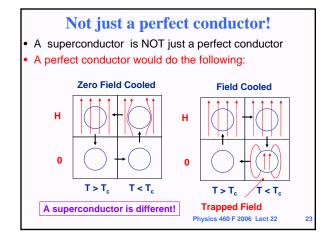

 $\rho \propto \text{scattering rate} \propto 1/\tau$

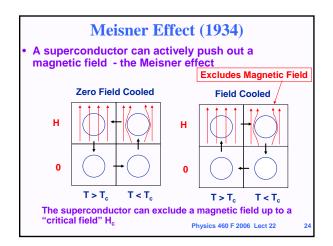

· Matthiesson's rule - scattering rates add

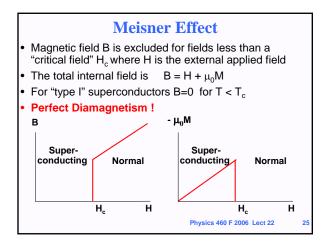

 $\rho = \rho_{\text{vibration}} + \rho_{\text{impurity}} \propto 1/\tau_{\text{vibration}} + 1/\tau_{\text{impurity}}$ Temperature independent Temperature dependent - sample dependent $\infty < u^2 >$

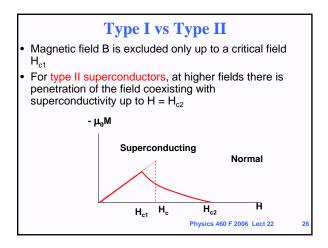

Physics 460 F 2006 Lect 22

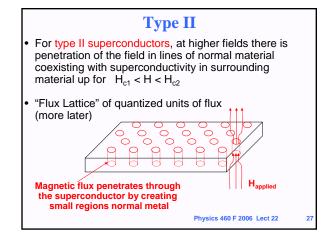

Electrical Resitivity Consider relative resistance R(T)/R(T=300K) · Typical behavior (here for potassium) Relative resistence Phonons dominate at high T because mean square 0.05 displacements <u²> ∞ T Leads to R ∝ T (Sample independent) Increase as T2 0.01 Т Inpurity scattering dominates at low T in a metal (Sample dependent) Physics 460 F 2006 Lect 22

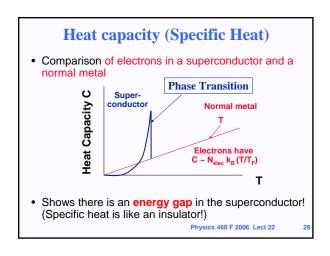


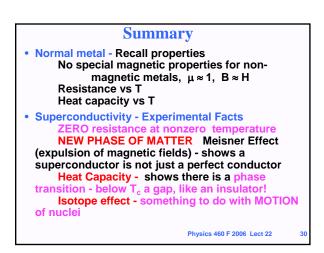












Isotope Effect (1950) • For materials made from the same elements - but different isotopes - T_c changes! • Experiment - T_c ~ 1/ M^{1/2} • MUST be connected to MOTION of the nuclei

Next time

- Superconductivity theory
 Basic ideas and phenomena
 Bardeen- Cooper-Schrieffer Theory 1957
 (Nobel Prize for work done in UIUC Physics)
- (Kittel parts of Ch 10)

Physics 460 F 2006 Lect 22