

Magnetic materials

- What causes some materials (e.g. Fe) to be ferromagnetic?
- Others like Cr are antiferromagnetic (what is this?)
- Magnetic materials tend to be in particular places in the periodic table: transition metals, rare earths Why?
- · Starting point for understanding: the fact that open shell atoms have moments. Why?
- · Leads us to a re-analysis of our picture of electron bands in materials. The band picture is not the whole story!

Hund's Rules & Electron Interactions

1st rule: maximum spin for electrons in a given shell

Reason – parallel-spin electrons are kept apart

because they must obey the exclusion principle - thus

the repulsive interaction between electrons is reduced

2nd rule: maximum angular momentum possible for the

Reason – maximum angulat momentum means

electrons are going the same direction around the

Electron-Electron Interactions!

nucleus - stay apart - lower energy!

Hund's rules -

for parallel spins!

given spin orientation

Physics 460 F 2006 Lect 24

Questions for understanding materials:

· Why are most magnetic materials composed of the 3d transition and 4f rare earth elements

- S_{total} = 5/2, L_{total} = 0

 $-S_{total} = 4/2, L_{total} = 2$ 2Physics 460 F 2006 Lect 24

Physics 460 F 2006 Lect 24

18

Physics 460 F 2006 Lect 24

17

Summary	
Open shell atoms have magnetic moments	
Hund's Rules	
 Curie Law for atoms in a magnetic field 	
 Atomic-like effects (local magnetic moments) can occur in solids – transition metals, rare earths 	
 Magnetism is cooperative phenomenon whereby all the moments together go through a phase transition to form an ordered state Curie-Weiss Law 	
Ferromagnetism	
Antiferromagnetism	Only
Magnetism as an "order parameter"	> mentioned briefly
Magnons	brieffy
Domains, irreversibility	
 (Kittel - parts of Ch 11-12) 	Lect 24 33

