
Solutions for Homework 2

September 29, 2006

1 Interplanar separation

Suppose the plane intercepts x,y,z axes at x1
−→a1, x2

−→a2, x3
−→a3 respectively. Then

x1 : x2 : x3 = 1
h : 1

k : 1
l .

(a) Prove that the reciprocal lattice vector −→G = h
−→
b1 + k

−→
b2 + l

−→
b3 is perpen-

dicular to this plane.
Two vectors in the plane are (x2

−→a2 − x1
−→a1) and (x3

−→a3 − x1
−→a1) Thus the

normal vector to the plane is

(x2
−→a2 − x1

−→a1)× (x3
−→a3 − x1

−→a1)

= x1x3
−→a3 ×−→a1 + x1x2

−→a1 ×−→a2 + x2x3
−→a2 ×−→a3

= x1x2x3(
1
x1

−→a2 ×−→a3 +
1
x2

−→a3 ×−→a1 +
1
x3

−→a1 ×−→a2)

∼ h
−→
b1 + k

−→
b2 + l

−→
b3

Therefore −→G = h
−→
b1 + k

−→
b2 + l

−→
b3 is perpendicular to this plane.

(b) Prove that the distance between two adjacent parallel planes of the lattice
is d(hkl) = 2π

‖G‖ .

For any −→R = x1
−→a1 + x2

−→a2 + x3
−→a3, the expression ei

−→
G
−→
R = const. Since the

lattice contain 0−→a1+0−→a2+0−→a3, we obtain that ei
−→
G
−→
R = const = 1. Therefore−→

G
−→
R = 2πn ⇒ −→

G∆−→R = 2π∆n.
The distance between two adjacent parallel plane (∆n = 1) is

d =
−→
G

‖−→G‖∆−→R =
2π

‖−→G‖
(c) For a simple cubic lattice,

−→
G = h

−→
b1 + k

−→
b2 + l

−→
b3

‖−→G‖ =
√

h2 + k2 + l2 × (
2π

a
)

Thus
d =

2π

‖G‖ =
a√

h2 + k2 + l2
.
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2 Volume of Brillouin zone

According to the hint, the volume of a Brillouin zone is equal to the volume of the
primitive parallelepiped in Fourier space. And the parallelepiped is described
by

~b1 = 2π
~a2 × ~a3

~a1 · ~a2 × ~a3

~b2 = 2π
~a3 × ~a1

~a1 · ~a2 × ~a3

~b3 = 2π
~a1 × ~a2

~a1 · ~a2 × ~a3

So the volume of the first Brillouin zone VBZ = ~b1 ·~b2×~b3 and Vc = ~a1 · ~a2× ~a3.

VBZ =
(2π)3

V 3
c

~a2 × ~a3 · ( ~a3 × ~a1)× ( ~a1 × ~a2)

=
(2π)3

V 3
c

~a2 × ~a3 · ( ~a3 · ~a1 × ~a2) ~a1

=
(2π)3

V 3
c

( ~a1 · ~a2 × ~a3)2 =
(2π)3

Vc

3 With of diffraction maximum

F =
1− e−iM(a∆k)

1− e−i(a∆k)

(a)

|F |2 = F ∗F =
1− eiM(a∆k)

1− ei(a∆k)

1− e−iM(a∆k)

1− e−i(a∆k)

=
2− eiM(a∆k) − e−iM(a∆k)

2− ei(a∆k) − e−i(a∆k)
=

1− cosM(a ·∆k)
1− cos a ·∆k

=
sin2 1

2M(a ·∆k)
sin2 1

2 (a ·∆k)

where we’ve used cos θ = 1− 2 sin2 θ
2 .

(b)
a ·∆k = 2πh + ε

|F |2 =
sin2(Mπh + ε

2M)
sin2(πh + ε

2 )
=

sin2(M
2 ε)

sin2(1
2ε)

For the first zero, M
2 ε = π, i.e, ε = 2π

M . So the width of the diffraction
maximum is proportion to 1/M .
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4 Problem 4

We can read off the angles 2θ from Fig 17, and also from problem 1, we know

d(111) =
a√
3
, d(200) =

a

2
, d(220) =

a

2
√

2
.

For lattice plane (111), 2θ = 23.50, plane (200), 2θ = 27.30,and plane (220),
2θ = 38.50.

So we can calculate the quantities nλ = 2d sin θ.

(111), λ = 0.235a

(200), λ = 0.236a

(220), λ = 0.233a

Thus, we can infer that λ ' 0.235a, which a is the lattice constant of the
simple cubic.

The energy of the x-ray is then

E = h̄ω =
hc

λ
=

hc

0.235a

If a is measured in the unit of Ȧ, then

E =
2π · 0.6582× 10−15eV · sec · 3× 108 × 1010Ȧ/sec

0.235a(Ȧ
=

5.279× 104

a
eV

5 Problem 5

From Problem 1, we know d = 2π

|~G| . Thus the Bragg condition nλ = 2d sin θ can
be cast into

4π

|~G|
sin θ = nλ ⇒ sin θ =

nλ

4π
|h~b1 + k~b2 + l ~b3|

h,k,l integers.
For bcc,

~b1 =
2π

a
(ŷ + ẑ), ~b2 =

2π

a
(ẑ + x̂), ~b3 =

2π

a
(x̂ + ŷ)

~G =
2π

a
[(k + l)x̂ + (l + h)ŷ + (h + k)ẑ]

⇒ | ~G| = 2π

a
[(k + l)2 + (l + h)2 + (h + k)2]1/2

So the first few |~G| can be
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•
|~G| = 2π

a

√
2

corresponding to(h, k, l) = ±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)

•
|~G| = 2π

a
2

corresponding to(h, k, l) = ±(2,−2, 0),±(0, 2,−2),±(−2, 0, 2)

•
|~G| = 2π

a

√
6

corresponding to(h, k, l) = ±(1, 1, 0),±(0, 1, 1),±(1, 0, 1),±(2,−1,−1),±(−1, 2,−1),±(−1,−1, 2)

So sin θ1 : sin θ2 : sin θ3 =
√

2 : 2 :
√

6 ' 1 : 1.414 : 1.732 for bcc.

For fcc,

~b1 =
2π

a
(−x̂ + ŷ + ẑ), ~b2 =

2π

a
(x̂− ŷ + ẑ), ~b3 =

2π

a
(x̂ + ŷ − ẑ)

~G =
2π

a
[(k + l − h)x̂ + (l + h− k)ŷ + (h + k − l)ẑ]

⇒ | ~G| = 2π

a
[(k + l − h)2 + (l + h− k)2 + (h + k − l)2]1/2

So the first few |~G| can be

•
|~G| = 2π

a

√
3

corresponding to(h, k, l) = ±(1, 1, 1),±(1, 0, 0),±(0, 1, 0),±(0, 0, 1)

•
|~G| = 2π

a
2

corresponding to(h, k, l) = ±(1, 0, 1),±(0, 1, 1),±(1, 1, 0)

•
|~G| = 2π

a

√
8

corresponding to(h, k, l) = ±(1, 1, 2),±(2, 1, 1),±(1, 2, 1),±(1, 0,−1),±(0, 1,−1),±(1,−1, 0)

So sin θ1 : sin θ2 : sin θ3 =
√

3 : 2 :
√

8 ' 1 : 1.155 : 1.633for fcc.
From the figure, we have

sin θ1 : sin θ2 : sin θ3 = sin
23.50

2
: sin

27.30

2
: sin

38.50

2

= 1 : 1.159 : 1.619

which is much closer to the result of fcc than to that of bcc.
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6 Structure factor of diamond

Here we give two ways to derive the result. The first is the long proof that
follows the suggestion to consider diamond as simple cubic with 8 atoms per
cell. The second is the short proof that uses the fact that diamond is fcc with
2 atoms per cell.

Diamond described as simple cubic with 8 atoms/cell:
The diamond structure can be described as a simple cubic lattice with the

eight point basis (0, 0, 0), a
2 (x̂ + ŷ), a

2 (ŷ + ẑ), a
2 (ẑ + x̂), a

4 (x̂ + ŷ + ẑ), a
4 (−x̂− ŷ +

ẑ), a
4 (x̂− ŷ − ẑ), a

4 (−x̂ + ŷ − ẑ). (a)
The structure factor S =

∑
j

fje
−i ~G·~rj ,

~G = v1
~b1 + v2

~b2 + v3
~b3 =

2π

a
(v1x̂ + v2ŷ + v3ẑ)

and fj = f (all the atoms are the same).

S = f(1 + e−i ~G· a
2 (x̂+ŷ) + e−i ~G· a

2 (ŷ+ẑ) + e−i ~G· a
2 (ẑ+x̂)

+e−i ~G· a
4 (x̂+ŷ+ẑ) + e−i ~G· a

4 (−x̂−ŷ+ẑ) + e−i ~G· a
4 (x̂−ŷ−ẑ) + e−i ~G· a

4 (−x̂+ŷ−ẑ))

= f(1 + e−iπ(v1+v2) + e−iπ(v2+v3) + e−iπ(v3+v1) + e−i π
2 (v1+v2+v3)

+e−i π
2 (−v1−v2+v3) + e−i π

2 (v1−v2−v3) + e−i π
2 (−v1+v2−v3))

= f [(1 + e−iπ(v1+v2) + e−iπ(v2+v3) + e−iπ(v3+v1))

+ei π
2 (v1+v2+v3)(1 + eiπ(v1+v2) + e−iπ(v2+v3) + eiπ(v3+v1)]

Since e−iπv = e−iπvei2πv = eiπv for v = integer,

S = f(1 + e−iπ(v1+v2) + e−iπ(v2+v3) + e−iπ(v3+v1))(1 + ei π
2 (v1+v2+v3))

(b)
So the zeros are
(i)

1 + e−iπ(v1+v2) + e−iπ(v2+v3) + e−iπ(v3+v1) = 0

This means two of e−iπ(vi+vj) are -1 and one is +1, i.e. two of vi + vj are odd
and one is even. It is possible only when two of v1, v2, v3 are even and the
remaining one is odd or two of v1, v2, v3 are odd and the remaining one is even.

(ii)
1 + ei π

2 (v1+v2+v3) = 0

⇒ 1
2
(v1 + v2 + v3) = odd ⇒ v1 + v2 + v3 = 2× (odd)

The allowed reflections are anything but (i) and (ii).
(1) All of v1, v2, v3 are odd.
(2) All of v1, v2, v3 are even. But if v1 + v2 + v3 = 2× (odd), S still vanishes.
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Thus v1 + v2 + v3 needs to be 2× (even). i.e. v1 + v2 + v3 = 4n when all of
v1, v2, v3 are even.

Diamond described as fcc with 2 atoms/cell:
The diamond structure can be described as a face centered cubic lattice with

the basis (0, 0, 0), a
4 (x̂ + ŷ + ẑ).

The reciprocal lattice is bcc with primitive vectors ~b1 = 2π
a (−x̂ + ŷ + ẑ),

~b2 = 2π
a (+x̂− ŷ + ẑ), ~b3 = 2π

a (+x̂ + ŷ − ẑ). The reciprocal lattice vectors are:

~G = m1
~b1+m2

~b2+m3
~b3 =

2π

a
[(−m1+m2+m3)x̂+(m1−m2+m3)ŷ+(m1+m2−m3)ẑ)

This can be written as

~G =
2π

a
[(v1x̂ + v2ŷ + v3ẑ),

where the integers (v1, v2, v3) are all odd or all even. The restriction to all odd
or all even integers can be seen by considering a bcc lattice as a simple cubic
lattice (the even integers) with body centers (the odd integers).

The structure factor S =
∑
j

fje
−i ~G·~rj with fj = f since the two atoms are

the same. Thus
S = f(1 + e−i ~G· a

4 (x̂+ŷ+ẑ)

This is zero if e−i ~G· a
4 (x̂+ŷ+ẑ) = −1, which means ~G · a

4 (x̂+ ŷ+ ẑ) = (2n+1)π,
i.e., an odd integer times π. Thus

π

2
[v1 + v2 + v3] = (2n + 1)π

or
v1 + v2 + v3 = 4n + 2

where n is an integer. Since the v’s are all odd or all even, the only cases where
S = 0 are they are even and do not sum to a multiple of 4. For example, the
(200) and 222 peaks are missing in Figure 18, whereas they would be present in
a fcc crystal with one atom/cell.

The vectors with do not satisfy this condition are ”allowed” reflections.
Clearly this includes all cases where the v’s are all odd and the case where
v1 + v2 + v3 = 4n.
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