Solutions for Homework 2

September 29, 2006

1 Interplanar separation

Suppose the plane intercepts $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes at $x_{1} \overrightarrow{a_{1}}, x_{2} \overrightarrow{a_{2}}, x_{3} \overrightarrow{a_{3}}$ respectively. Then $x_{1}: x_{2}: x_{3}=\frac{1}{h}: \frac{1}{k}: \frac{1}{l}$.
(a) Prove that the reciprocal lattice vector $\vec{G}=h \overrightarrow{b_{1}}+k \overrightarrow{b_{2}}+l \overrightarrow{b_{3}}$ is perpendicular to this plane.

Two vectors in the plane are $\left(x_{2} \overrightarrow{a_{2}}-x_{1} \overrightarrow{a_{1}}\right)$ and $\left(x_{3} \overrightarrow{a_{3}}-x_{1} \overrightarrow{a_{1}}\right)$ Thus the normal vector to the plane is

$$
\begin{gathered}
\left(x_{2} \overrightarrow{a_{2}}-x_{1} \overrightarrow{a_{1}}\right) \times\left(x_{3} \overrightarrow{a_{3}}-x_{1} \overrightarrow{a_{1}}\right) \\
=x_{1} x_{3} \overrightarrow{a_{3}} \times \overrightarrow{a_{1}}+x_{1} x_{2} \overrightarrow{a_{1}} \times \overrightarrow{a_{2}}+x_{2} x_{3} \overrightarrow{a_{2}} \times \overrightarrow{a_{3}} \\
=x_{1} x_{2} x_{3}\left(\frac{1}{x_{1}} \overrightarrow{a_{2}} \times \overrightarrow{a_{3}}+\frac{1}{x_{2}} \overrightarrow{a_{3}} \times \overrightarrow{a_{1}}+\frac{1}{x_{3}} \overrightarrow{a_{1}} \times \overrightarrow{a_{2}}\right) \\
\sim h \overrightarrow{b_{1}}+k \overrightarrow{b_{2}}+l \overrightarrow{b_{3}} \\
\text { and }
\end{gathered}
$$

Therefore $\vec{G}=h \overrightarrow{b_{1}}+k \overrightarrow{b_{2}}+l \overrightarrow{b_{3}}$ is perpendicular to this plane.
(b) Prove that the distance between two adjacent parallel planes of the lattice is $d(h k l)=\frac{2 \pi}{\|G\|}$.

For any $\vec{R}=x_{1} \overrightarrow{a_{1}}+x_{2} \overrightarrow{a_{2}}+x_{3} \overrightarrow{a_{3}}$, the expression $e^{i \vec{G} \vec{R}}=$ const. Since the lattice contain $0 \overrightarrow{a_{1}}+0 \overrightarrow{a_{2}}+0 \overrightarrow{a_{3}}$, we obtain that $e^{i \vec{G} \vec{R}}=$ const $=1$. Therefore $\vec{G} \vec{R}=2 \pi n \Rightarrow \vec{G} \Delta \vec{R}=2 \pi \Delta n$.

The distance between two adjacent parallel plane $(\Delta n=1)$ is

$$
d=\frac{\vec{G}}{\|\vec{G}\|} \Delta \vec{R}=\frac{2 \pi}{\|\vec{G}\|}
$$

(c) For a simple cubic lattice,

$$
\begin{gathered}
\vec{G}=h \overrightarrow{b_{1}}+k \overrightarrow{b_{2}}+l \overrightarrow{b_{3}} \\
\|\vec{G}\|=\sqrt{h^{2}+k^{2}+l^{2}} \times\left(\frac{2 \pi}{a}\right)
\end{gathered}
$$

Thus

$$
d=\frac{2 \pi}{\|G\|}=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}
$$

2 Volume of Brillouin zone

According to the hint, the volume of a Brillouin zone is equal to the volume of the primitive parallelepiped in Fourier space. And the parallelepiped is described by

$$
\begin{aligned}
& \overrightarrow{b_{1}}=2 \pi \frac{\overrightarrow{a_{2}} \times \overrightarrow{a_{3}}}{\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}} \times \overrightarrow{a_{3}}} \\
& \overrightarrow{b_{2}}=2 \pi \frac{\overrightarrow{a_{3}} \times \overrightarrow{a_{1}}}{\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}} \times \overrightarrow{a_{3}}} \\
& \overrightarrow{b_{3}}=2 \pi \frac{\overrightarrow{a_{1}} \times \overrightarrow{a_{2}} \cdot \overrightarrow{a_{2}} \times \overrightarrow{a_{3}}}{}
\end{aligned}
$$

So the volume of the first Brillouin zone $V_{B Z}=\overrightarrow{b_{1}} \cdot \overrightarrow{b_{2}} \times \overrightarrow{b_{3}}$ and $V_{c}=\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}} \times \overrightarrow{a_{3}}$.

$$
\begin{aligned}
V_{B Z} & =\frac{(2 \pi)^{3}}{V_{c}^{3}} \overrightarrow{a_{2}} \times \overrightarrow{a_{3}} \cdot\left(\overrightarrow{a_{3}} \times \overrightarrow{a_{1}}\right) \times\left(\overrightarrow{a_{1}} \times \overrightarrow{a_{2}}\right) \\
& =\frac{(2 \pi)^{3}}{V_{c}^{3}} \overrightarrow{a_{2}} \times \overrightarrow{a_{3}} \cdot\left(\overrightarrow{a_{3}} \cdot \overrightarrow{a_{1}} \times \overrightarrow{a_{2}}\right) \overrightarrow{a_{1}} \\
& =\frac{(2 \pi)^{3}}{V_{c}^{3}}\left(\overrightarrow{a_{1}} \cdot \overrightarrow{a_{2}} \times \overrightarrow{a_{3}}\right)^{2}=\frac{(2 \pi)^{3}}{V_{c}}
\end{aligned}
$$

3 With of diffraction maximum

$$
F=\frac{1-e^{-i M(a \Delta k)}}{1-e^{-i(a \Delta k)}}
$$

(a)

$$
\begin{gathered}
|F|^{2}=F^{*} F=\frac{1-e^{i M(a \Delta k)}}{1-e^{i(a \Delta k)}} \frac{1-e^{-i M(a \Delta k)}}{1-e^{-i(a \Delta k)}} \\
=\frac{2-e^{i M(a \Delta k)}-e^{-i M(a \Delta k)}}{2-e^{i(a \Delta k)}-e^{-i(a \Delta k)}}=\frac{1-\cos M(a \cdot \Delta k)}{1-\cos a \cdot \Delta k} \\
=\frac{\sin ^{2} \frac{1}{2} M(a \cdot \Delta k)}{\sin ^{2} \frac{1}{2}(a \cdot \Delta k)}
\end{gathered}
$$

where we've used $\cos \theta=1-2 \sin ^{2} \frac{\theta}{2}$.
(b)

$$
\begin{gathered}
a \cdot \Delta k=2 \pi h+\epsilon \\
|F|^{2}=\frac{\sin ^{2}\left(M \pi h+\frac{\epsilon}{2} M\right)}{\sin ^{2}\left(\pi h+\frac{\epsilon}{2}\right)}=\frac{\sin ^{2}\left(\frac{M}{2} \epsilon\right)}{\sin ^{2}\left(\frac{1}{2} \epsilon\right)}
\end{gathered}
$$

For the first zero, $\frac{M}{2} \epsilon=\pi$, i.e, $\epsilon=\frac{2 \pi}{M}$. So the width of the diffraction maximum is proportion to $1 / M$.

4 Problem 4

We can read off the angles 2θ from Fig 17, and also from problem 1, we know

$$
d(111)=\frac{a}{\sqrt{3}}, d(200)=\frac{a}{2}, d(220)=\frac{a}{2 \sqrt{2}}
$$

For lattice plane (111), $2 \theta=23.5^{0}$, plane (200), $2 \theta=27.3^{0}$, and plane (220), $2 \theta=38.5^{0}$.

So we can calculate the quantities $n \lambda=2 d \sin \theta$.

$$
\begin{aligned}
& (111), \lambda=0.235 a \\
& (200), \lambda=0.236 a \\
& (220), \lambda=0.233 a
\end{aligned}
$$

Thus, we can infer that $\lambda \simeq 0.235 a$, which a is the lattice constant of the simple cubic.

The energy of the x-ray is then

$$
E=\hbar \omega=\frac{h c}{\lambda}=\frac{h c}{0.235 a}
$$

If a is measured in the unit of \dot{A}, then

$$
E=\frac{2 \pi \cdot 0.6582 \times 10^{-15} \mathrm{eV} \cdot \mathrm{sec} \cdot 3 \times 10^{8} \times 10^{10} \dot{A} / \mathrm{sec}}{0.235 a(\dot{A}}=\frac{5.279 \times 10^{4}}{a} \mathrm{eV}
$$

5 Problem 5

From Problem 1, we know $d=\frac{2 \pi}{|\vec{G}|}$. Thus the Bragg condition $n \lambda=2 d \sin \theta$ can be cast into

$$
\frac{4 \pi}{|\vec{G}|} \sin \theta=n \lambda \Rightarrow \sin \theta=\frac{n \lambda}{4 \pi}\left|h \overrightarrow{b_{1}}+k \overrightarrow{b_{2}}+l \overrightarrow{b_{3}}\right|
$$

h, k, l integers.
For bcc,

$$
\begin{gathered}
\overrightarrow{b_{1}}=\frac{2 \pi}{a}(\hat{y}+\hat{z}), \overrightarrow{b_{2}}=\frac{2 \pi}{a}(\hat{z}+\hat{x}), \overrightarrow{b_{3}}=\frac{2 \pi}{a}(\hat{x}+\hat{y}) \\
\vec{G}=\frac{2 \pi}{a}[(k+l) \hat{x}+(l+h) \hat{y}+(h+k) \hat{z}] \\
\Rightarrow|\vec{G}|=\frac{2 \pi}{a}\left[(k+l)^{2}+(l+h)^{2}+(h+k)^{2}\right]^{1 / 2}
\end{gathered}
$$

So the first few $|\vec{G}|$ can be

- $|\vec{G}|=\frac{2 \pi}{a} \sqrt{2}$
corresponding to $(h, k, l)= \pm(1,0,0), \pm(0,1,0), \pm(0,0,1)$
$|\vec{G}|=\frac{2 \pi}{a} 2$
corresponding to $(h, k, l)= \pm(2,-2,0), \pm(0,2,-2), \pm(-2,0,2)$

$$
|\vec{G}|=\frac{2 \pi}{a} \sqrt{6}
$$

corresponding to $(h, k, l)= \pm(1,1,0), \pm(0,1,1), \pm(1,0,1), \pm(2,-1,-1), \pm(-1,2,-1), \pm(-1,-1,2)$
So $\sin \theta_{1}: \sin \theta_{2}: \sin \theta_{3}=\sqrt{2}: 2: \sqrt{6} \simeq 1: 1.414: 1.732$ for bcc.
For fcc,

$$
\begin{gathered}
\overrightarrow{b_{1}}=\frac{2 \pi}{a}(-\hat{x}+\hat{y}+\hat{z}), \overrightarrow{b_{2}}=\frac{2 \pi}{a}(\hat{x}-\hat{y}+\hat{z}), \overrightarrow{b_{3}}=\frac{2 \pi}{a}(\hat{x}+\hat{y}-\hat{z}) \\
\vec{G}=\frac{2 \pi}{a}[(k+l-h) \hat{x}+(l+h-k) \hat{y}+(h+k-l) \hat{z}] \\
\Rightarrow|\vec{G}|=\frac{2 \pi}{a}\left[(k+l-h)^{2}+(l+h-k)^{2}+(h+k-l)^{2}\right]^{1 / 2}
\end{gathered}
$$

So the first few $|\vec{G}|$ can be

$$
|\vec{G}|=\frac{2 \pi}{a} \sqrt{3}
$$

corresponding to $(h, k, l)= \pm(1,1,1), \pm(1,0,0), \pm(0,1,0), \pm(0,0,1)$
\bullet

$$
|\vec{G}|=\frac{2 \pi}{a} 2
$$

corresponding to $(h, k, l)= \pm(1,0,1), \pm(0,1,1), \pm(1,1,0)$

$$
|\vec{G}|=\frac{2 \pi}{a} \sqrt{8}
$$

corresponding to $(h, k, l)= \pm(1,1,2), \pm(2,1,1), \pm(1,2,1), \pm(1,0,-1), \pm(0,1,-1), \pm(1,-1,0)$
So $\sin \theta_{1}: \sin \theta_{2}: \sin \theta_{3}=\sqrt{3}: 2: \sqrt{8} \simeq 1: 1.155: 1.633$ for fcc.
From the figure, we have

$$
\begin{gathered}
\sin \theta_{1}: \sin \theta_{2}: \sin \theta_{3}=\sin \frac{23.5^{0}}{2}: \sin \frac{27.3^{0}}{2}: \sin \frac{38.5^{0}}{2} \\
=1: 1.159: 1.619
\end{gathered}
$$

which is much closer to the result of fcc than to that of bcc.

6 Structure factor of diamond

Here we give two ways to derive the result. The first is the long proof that follows the suggestion to consider diamond as simple cubic with 8 atoms per cell. The second is the short proof that uses the fact that diamond is fcc with 2 atoms per cell.

Diamond described as simple cubic with 8 atoms/cell:
The diamond structure can be described as a simple cubic lattice with the eight point basis $(0,0,0), \frac{a}{2}(\hat{x}+\hat{y}), \frac{a}{2}(\hat{y}+\hat{z}), \frac{a}{2}(\hat{z}+\hat{x}), \frac{a}{4}(\hat{x}+\hat{y}+\hat{z}), \frac{a}{4}(-\hat{x}-\hat{y}+$ $\hat{z}), \frac{a}{4}(\hat{x}-\hat{y}-\hat{z}), \frac{a}{4}(-\hat{x}+\hat{y}-\hat{z})$. (a)

The structure factor $S=\sum_{j} f_{j} e^{-i \vec{G} \cdot \overrightarrow{r_{j}}}$,

$$
\vec{G}=v_{1} \overrightarrow{b_{1}}+v_{2} \overrightarrow{b_{2}}+v_{3} \overrightarrow{b_{3}}=\frac{2 \pi}{a}\left(v_{1} \hat{x}+v_{2} \hat{y}+v_{3} \hat{z}\right)
$$

and $f_{j}=f$ (all the atoms are the same).

$$
\begin{gathered}
S=f\left(1+e^{-i \vec{G} \cdot \frac{a}{2}(\hat{x}+\hat{y})}+e^{-i \vec{G} \cdot \frac{a}{2}(\hat{y}+\hat{z})}+e^{-i \vec{G} \cdot \frac{a}{2}(\hat{z}+\hat{x})}\right. \\
\left.+e^{-i \vec{G} \cdot \frac{a}{4}(\hat{x}+\hat{y}+\hat{z})}+e^{-i \vec{G} \cdot \frac{a}{4}(-\hat{x}-\hat{y}+\hat{z})}+e^{-i \vec{G} \cdot \frac{a}{4}(\hat{x}-\hat{y}-\hat{z})}+e^{-i \vec{G} \cdot \frac{a}{4}(-\hat{x}+\hat{y}-\hat{z})}\right) \\
=f\left(1+e^{-i \pi\left(v_{1}+v_{2}\right)}+e^{-i \pi\left(v_{2}+v_{3}\right)}+e^{-i \pi\left(v_{3}+v_{1}\right)}+e^{-i \frac{\pi}{2}\left(v_{1}+v_{2}+v_{3}\right)}\right. \\
\left.+e^{-i \frac{\pi}{2}\left(-v_{1}-v_{2}+v_{3}\right)}+e^{-i \frac{\pi}{2}\left(v_{1}-v_{2}-v_{3}\right)}+e^{-i \frac{\pi}{2}\left(-v_{1}+v_{2}-v_{3}\right)}\right) \\
=f\left[\left(1+e^{-i \pi\left(v_{1}+v_{2}\right)}+e^{-i \pi\left(v_{2}+v_{3}\right)}+e^{-i \pi\left(v_{3}+v_{1}\right)}\right)\right. \\
+e^{i \frac{\pi}{2}\left(v_{1}+v_{2}+v_{3}\right)}\left(1+e^{i \pi\left(v_{1}+v_{2}\right)}+e^{-i \pi\left(v_{2}+v_{3}\right)}+e^{i \pi\left(v_{3}+v_{1}\right)}\right]
\end{gathered}
$$

Since $e^{-i \pi v}=e^{-i \pi v} e^{i 2 \pi v}=e^{i \pi v}$ for $v=$ integer,

$$
S=f\left(1+e^{-i \pi\left(v_{1}+v_{2}\right)}+e^{-i \pi\left(v_{2}+v_{3}\right)}+e^{-i \pi\left(v_{3}+v_{1}\right)}\right)\left(1+e^{i \frac{\pi}{2}\left(v_{1}+v_{2}+v_{3}\right)}\right)
$$

(b)

So the zeros are
(i)

$$
1+e^{-i \pi\left(v_{1}+v_{2}\right)}+e^{-i \pi\left(v_{2}+v_{3}\right)}+e^{-i \pi\left(v_{3}+v_{1}\right)}=0
$$

This means two of $e^{-i \pi\left(v_{i}+v_{j}\right)}$ are -1 and one is +1 , i.e. two of $v_{i}+v_{j}$ are odd and one is even. It is possible only when two of v_{1}, v_{2}, v_{3} are even and the remaining one is odd or two of v_{1}, v_{2}, v_{3} are odd and the remaining one is even.

$$
\begin{gather*}
1+e^{i \frac{\pi}{2}\left(v_{1}+v_{2}+v_{3}\right)}=0 \tag{ii}\\
\Rightarrow \frac{1}{2}\left(v_{1}+v_{2}+v_{3}\right)=o d d \Rightarrow v_{1}+v_{2}+v_{3}=2 \times(\text { odd })
\end{gather*}
$$

The allowed reflections are anything but (i) and (ii).
(1) All of v_{1}, v_{2}, v_{3} are odd.
(2) All of v_{1}, v_{2}, v_{3} are even. But if $v_{1}+v_{2}+v_{3}=2 \times($ odd $)$, S still vanishes.

Thus $v_{1}+v_{2}+v_{3}$ needs to be $2 \times($ even $)$. i.e. $v_{1}+v_{2}+v_{3}=4 n$ when all of v_{1}, v_{2}, v_{3} are even.

Diamond described as fcc with 2 atoms/cell:
The diamond structure can be described as a face centered cubic lattice with the basis $(0,0,0), \frac{a}{4}(\hat{x}+\hat{y}+\hat{z})$.

The reciprocal lattice is bcc with primitive vectors $\overrightarrow{b_{1}}=\frac{2 \pi}{a}(-\hat{x}+\hat{y}+\hat{z})$, $\overrightarrow{b_{2}}=\frac{2 \pi}{a}(+\hat{x}-\hat{y}+\hat{z}), \overrightarrow{b_{3}}=\frac{2 \pi}{a}(+\hat{x}+\hat{y}-\hat{z})$. The reciprocal lattice vectors are:

$$
\vec{G}=m_{1} \overrightarrow{b_{1}}+m_{2} \overrightarrow{b_{2}}+m_{3} \overrightarrow{b_{3}}=\frac{2 \pi}{a}\left[\left(-m_{1}+m_{2}+m_{3}\right) \hat{x}+\left(m_{1}-m_{2}+m_{3}\right) \hat{y}+\left(m_{1}+m_{2}-m_{3}\right) \hat{z}\right)
$$

This can be written as

$$
\vec{G}=\frac{2 \pi}{a}\left[\left(v_{1} \hat{x}+v_{2} \hat{y}+v_{3} \hat{z}\right),\right.
$$

where the integers $\left(v_{1}, v_{2}, v_{3}\right)$ are all odd or all even. The restriction to all odd or all even integers can be seen by considering a bcc lattice as a simple cubic lattice (the even integers) with body centers (the odd integers).

The structure factor $S=\sum_{j} f_{j} e^{-i \vec{G} \cdot \vec{r}_{j}}$ with $f_{j}=f$ since the two atoms are the same. Thus

$$
S=f\left(1+e^{-i \vec{G} \cdot \frac{a}{4}(\hat{x}+\hat{y}+\hat{z})}\right.
$$

This is zero if $e^{-i \vec{G} \cdot \frac{a}{4}(\hat{x}+\hat{y}+\hat{z})}=-1$, which means $\vec{G} \cdot \frac{a}{4}(\hat{x}+\hat{y}+\hat{z})=(2 n+1) \pi$, i.e., an odd integer times π. Thus

$$
\frac{\pi}{2}\left[v_{1}+v_{2}+v_{3}\right]=(2 n+1) \pi
$$

or

$$
v_{1}+v_{2}+v_{3}=4 n+2
$$

where n is an integer. Since the v 's are all odd or all even, the only cases where $S=0$ are they are even and do not sum to a multiple of 4 . For example, the (200) and 222 peaks are missing in Figure 18, whereas they would be present in a fcc crystal with one atom/cell.

The vectors with do not satisfy this condition are "allowed" reflections. Clearly this includes all cases where the v 's are all odd and the case where $v_{1}+v_{2}+v_{3}=4 n$.

