
Solutions for Homework 4

October 6, 2006

1 Kittel 3.8 - Young’s modulus and Poison ratio

As shown in the figure stretching a cubic crystal in the x direction with a
stress Xx causes a strain exx = δl/l and eyy = ezz = −δw/w. (Note minus
sign - defined so that δw > 0 as in the text.) The key is that the stress
in the y and z directions is zero. Then Y y = C12exx + C12ezz + C11eyy =
C12exx + (C12 + C11)eyy = 0

Poisson ratio:
δw/w

δl/l
= − eyy

exx
=

C12

C11 + C12

Now consider Xx = C11exx +C12ezz +C12eyy = C11exx +2C12eyy = (C11 +
2C12

eyy

exx
)exx. Then Young’s modulus: Y = Xx

exx
= C11 − 2C12

C12
C11+C12

which
with a little algebra can be transformed to:

Y =
(C11 − C12)(C11 + 2C12)

C11 + C12

2 Kittel 4-2 Continuum elastic equation

The key to this problem is that a second derivation is the limit of the numerical
difference formula

d2u(x)
dx2

=
u(x + h) + u(x− h)− 2u(x)

h2

The expression for the lattice (Eq. 2, Ch 5) is:

d2us

dt2
= (C/M)(us+1 + us−1 − 2us) = (Ca2/M)

us+1 + us−1 − 2us

a2

In the long wave limit the change in u from one site to the next is very small
compared to a. Therefore, u approaches a continuous function of position x = sa
and the equation becomes

d2us

dt2
= (Ca2/M)

d2u(x)
dx2

with the sped of sound v2 = (Ca2/M) as given in Eq. 15.
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3 Kittel 4-3 Basis of two atoms

For k = π/a, eika = −1 and the equation 20 decouples into two independent
equations:
(2C −M1ω

2)u = 0 and (2C −M2ω
2)v = 0

Thus it follows that if 2C −M1ω
2 = 0, then u can be non-zero, but v must be

zero, etc.

4 Kittel 4-5 Chain with C, 10C

If there are alternating force constants C and 10C, then the lattice has the form
... x1 −−−C −−− x2 −−10C −−x1 −−−C −−− x2 −−10C −−x1 −−−
C −−− x2 −−10C −−x1 ...
where the sites are labelled 1 and 2. The displacements of the sites are u and
v. The nearest-neigh. is defined to be a/2 and the lattice constant is a, and the
BZ is −π/a to π/a. Each site has a bond with force constant C on one side and
10C on the other. We can choose the cell to be x1−−−C−−−x2−−10C−−
(we would get the same answer with another choice). Then the equations are
the ones in the text (Eq 18) modified to

M
d2us

dt2
= 10C(vs−1 − us) + C(vs − us)

M
d2vs

dt2
= 10C(us+1 − vs) + C(us − vs)

or
(11C −Mω2)u = 10Cve−ika + Cv

(11C −Mω2)v = 10Cue+ika + Cu

At k = 0, this becomes (11C −Mω2)u = 11Cv and (11C −Mω2)v = 11Cv,
Substituting one equation into the other gives (11C −Mω2)2u = (11C)2, or

(11C −Mω2) = ±11C

which has two solutions ω = 0 and ω2 = 22C/M
At k = π/a, e+ika = −1 and the equations become (11C −Mω2)u = −9Cv

and (11C − Mω2)v = −9Cv, Substituting one equation into the other gives
(11C −Mω2)2u = (9C)2, or

(11C −Mω2) = ±9C

which has two solutions ω = 2C/M and ω2 = 20C/M
The curves look like Fig. 7 in Ch. 5 of Kittel, except that there is a much

larger difference in the two frequencies at the zone boundary.
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5 Speed of sound in C and Au

The speed of a longitudinal wave in the [100] direction in a cubic crystal is given
by v = (C11/ρ)1/2.
For diamond, C11 = 10.76x1011N/m2, ρ = 3.52x103Kg/m3

v = (C11/ρ)1/2 = 1.75x104m/s
For Au, C11 = 1.92x1011N/m2 at 300K, ρ = 19.5x103Kg/m3

v = 0.31x104m/s

6 Elastic properties and phonons in a simple cu-
bic crystal

Consider a simple cubic crystal with lattice constant a and one atom per cell
of mass M . Assume the atoms interact with nearest-neighbor forces φ(R) with
second derivative C = φ′′. Answer the questions below in terms of a, M , and
C.

A. Give expression for the elastic constant C11 and the bulk modulus B.

C11 =
1
V

d2U

de2
xx

, and B =
1
V

=
d2U

(dV/V )2
= V

d2U

dV 2

where U is the energy of a cell with volume V . For simple cubic with one atom
per cell, we can take U to be the energy per atom and V = a3. There are 3
bonds per atom in the x, y and z directions and U = [φ(ax) + φ(ay)φ(az) as a
function of the lengths in the 3 directions. For the calculation of B, the length
of all three bonds change equally and it is sufficient to consider dV = d(a3) =
3a2da = 3V da/a = 3(V/a)da. Then

B = B = V
d2U

dV 2
=

V

9V 2/a2

d2U

da2
=

a2

3V

d2φ(a)
da2

=
C

3a

For C11 only ax changes, and dexx = dax/ax = dax/a evaluated for ax = a.
Then

C11 =
1
V

d2U

de2
xx

=
a2

V

d2φ(ax)
da2

x

=
C

a

Note that the general relation B = 1
3 (C11 + 2C12) is satisfied in the case

because C12 = 0. (Check this for yourself.)
B. Give the expression for the longitudinal sound velocity v in the [100]

direction in terms of the appropriate elastic constant.
vs = (C11/ρ)1/2 as explain in the book andd class notes.
C. Give the expression for the dispersion curve ω(k) for longitudinal motion

as a function of wavevector k in the [100] direction. Show that this leads to
a velocity of sound in agreement with part B and give the expression for the
frequency ωBZ for k at the boundary of the Brillouin zone.
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As given in the notes for lecture 8 (and discussed above), in this case only
the φ(ax) bond is involved in this case. The problem is exactly like a one
dimensional line of atoms with spring constant C, and

ω(k) = 2(C/M)1/2sin(ka/2), and vs =
dω(k)

dk
= a(C/M)1/2cos(ka/2) = 2a(C/M)1/2forsmallk

The zone boundary frequency is ωBZ = 2(C/M)1/2sin(π/2) = 2(C/M)1/2.
The speed of sound is vs = a(C/M)1/2, and using ρ = M/a3, this becomes
vs = a(C/ρa3)1/2 which is vs = a(C11/ρa2)1/2 = (C11/ρ)1/2, which agrees with
the elastic equation above.

D. Find values of each of the quantities C11, B, v, and ωBZ , for the case
where M = mass of the Al atom, a = 0.286 nm (the nearest-neigh. distance in
Al given in Kittel), and an estimate of C = 100 eV/nm2 (This is a very crude
estimate of φ′′ based upon the idea that displacement of an atom by 0.1 nm
should change the energy by of order 1 eV.)

Using the expressions above and the values a = 0.286x10−9 m, M = 26.981539Amu =
0.451x10−25 Kg, C = 100eV/nm2 = 100x1.6x10−19/10−18 = 16.0 J/m2, we find

C11 =
C

a
= (16/0.286)x109J/m3 = 0.56x1011J/m3

B = C11/3 = 0.18x1011J/m3

v = a(C/M)1/2 = 0.286x10−9(16.0/0.451x10−25(1/2= 0.286x1.88x103 = 0.56x103m/s

ωBZ = 2(C/M)1/2 = 2(16.0/0.451x10−25(1/2= 2x1.88x1012 = 3.76x1012s−1

E. Even though Al does not form the simple cubic structure and the value
of C is a crude estimate, the results should be of the same order of magnitude
as in real Al. Compare C11 and B with the actual values for Al given in Kittel.

The values are C11 = 1.068x1011J/m3 and B = 1
3 (C11+2C12) = 0.761x1011J/m3.

Reasonable agreement! The reason B is too low in the calculation is that C12

is larger in fcc Al, whereas it is zero in the above model for simple cubic.

7 Phonons in Na

In Figure 11 (chapter 4) of Kittel, are shown the measured dispersion curves
of Na, which has the bcc structure. It is a good approximation to assume the
interaction φ(R) acts only between nearest neighbors.

A. From the value of the longitudinal frequency at the zone boundary in the
[100] direction, find the value of the second derivative φ′′. (Note that you must
treat Na as bcc and the neighbors are not oriented along the [100] direction.)

THIS IS CORRECTED ON OCTOBER 6. THE SOLUTION POSTED
OCTOBER 4 HAD A MISTAKE. The general expression for the effective force
constant is given in lecture 8: Ceff = Cx

∑
i(cos(Θi)2 (here we use C = φ′′

. For bcc one has 8 neighbors so that there are 4 neighbors in an adjacent
plane. Since the neighbors are in the (111) direction for motion in the (100),
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(010), or (001) directions cos2(Θ) = 1/3. Thus Ceff = (4/3)φ′′ for either
longitudinal or transverse motion. This leads to ω(k) = 2(4C/3M)1/2sin(ka/2)
and ωBZ = 2(4C/3M)1/2 or C = Mω2

BZ(3/16). Using ωBZ 2πx3.61012s−1 from
the graph and M = 22.98977 Amu, we find:

C = Mω2
BZ(3/16) = (3π2/4)22.99x1.67x10−27x12.96x1024 = 2.212J/m3

B. Give the expression for the dispersion curve for transverse motion (k in
the [100] direction, displacement in the [010] direction) using the value of φ′′

from part A. What is the value of the frequency at the Brillouin zone boundary?
For this model of bcc the transverse frequency is the same as the longitudinal

frequency (because each neighbor has the same angles Θ for the motions). Note
that this is very close to the observed transverse and longitudinal modes in the
figure for Na.
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