Physics 460 Homework 8 Solutions

1 Kitty 8-1
(a)

$$
E_{d}=\frac{e^{4} m_{e}}{2 \epsilon^{2} \hbar^{2}}=\frac{13,6}{E^{2}} \frac{m e}{m} e V=\frac{136}{18^{2}} 0.015=6.29 \times 10^{-4} \mathrm{eV}
$$

(b)

$$
a_{d}=\frac{\epsilon h^{2}}{m_{e} e^{2}}=\frac{0.53 \epsilon}{m_{e} / m} \dot{A}=\frac{0.53 \times 1 b}{0.015} \mathrm{~A}=636 \mathrm{~A}
$$

(C)

Overlap when $\quad \frac{4}{3} \pi a_{d}^{3}+N=V \Rightarrow$ concentration $n \approx \frac{1}{\frac{4}{3} \pi a_{d}^{3}}=9.28 \times 10^{20} \frac{1}{\mathrm{~m}^{3}}$

2 kittel $8-2$
Error in original solution the final answer is the same
(a)

$$
\begin{aligned}
& n \cong\left(n \cdot N_{d}\right)^{1 / 2} e^{-E_{d} / 2 k_{B} T} \quad N_{d}=10^{13} \text { donors } / \mathrm{cm}^{3} \quad m_{e}=0.01 \mathrm{~m} \\
& n_{0}=2\left(m e k_{B} T / 2 a t^{2}\right)^{3 / 2}=2 \quad-31=4 K \quad E_{d}=1 \text { meV } \\
& =3.856 \times 10^{19} \mathrm{~m} \mathrm{~m}^{3}\left(0.01 \mathrm{q} 11 \times 10 \mathrm{~kg} 1138 \times 10^{-23} 4 \mathrm{~J} / 2 \pi\left(1.55 \times 10^{-34} \mathrm{J5}\right)^{2}\right)^{3 / 2} \\
& \left.=\left(3.856 \times 11^{10} \times 10 \times 1\right)^{\frac{2}{2}} e^{-10.2 .4}\right)-1.66 \times 10^{4}=4.606 \times 10^{18} \frac{1}{n} \\
& R_{H}=-\frac{1}{n e}=-\frac{1}{4,606 \times 10^{12} \cdot 1,602 \times 1016}=-1,355 \times 10^{6} \frac{\mathrm{Gn}^{3}}{\mathrm{Con}^{1}} \\
& =4.606 \times 14^{12} / \mathrm{cm}^{3}
\end{aligned}
$$

3
(a)

$$
\begin{aligned}
& R_{H}=-\frac{1}{n e}=-\frac{1}{\left(n_{0} N_{1}\right)^{1 / 2} e} e^{E d / 2 n_{n} T} \\
& \text { as } T \rightarrow 0 R_{H} \rightarrow-\infty
\end{aligned}
$$

(b) $R_{H}=-\frac{1}{n e}$ roughly constant
(C)

$$
R_{H}=\frac{1}{n e}=\frac{1}{\left(r_{0} \times k_{d}\right)^{1 / 2} e} e^{E d / 2 k_{B} T} \quad \text { change sign relation to (a) }
$$

4

reverse bias

Allowed:
block:

$$
n \rightarrow p .
$$

5 From the result of todd. 2.

N
p
N
Band

No. $N_{n}, N_{n_{2}}$ can be sitferent
 \& result for the model ma bl 2

In \equiv-direction, the dectron motion is quantize
$k_{z}=\frac{n \pi}{1}(n=1,2,3, \cdots)$ while $k_{x} k_{y}$ are not restricted
Thus $E_{x}=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+\left(\frac{n m}{L}\right)^{2}\right)$
\therefore The lowest posside energy relative t. that of the Conduction band bottom is $E_{\text {limes }}=\frac{\hbar}{2 m^{4}}\left(\frac{\pi}{2}\right)^{2}$
$m^{*}=0.066 \mathrm{~m}$ for Gats

$$
E_{Q_{\text {west }}}=\frac{\left(1.055 \times 10^{-34} \mathrm{JJ}\right)^{2}}{20.0066 \cdot 9 \sqrt[11 \times 10^{-31}]{\mathrm{kg}}}\left(\frac{\mathrm{~T}}{2 \times 15^{-8} \mathrm{~m}}\right)^{2}=2284 \times 10^{-21} \mathrm{~J}=1,426 \times 10 \mathrm{eV}
$$

7. Because the electrons cor be cons der at to be only in the lowest guonturn state, in the z-d direction, they are not free to move in that direction. They are two-dimensiona $8 \quad k_{x}, k_{y} k_{z}$ are quantized

$$
\begin{aligned}
k_{x} & =\frac{n_{x} \pi}{L} \cdot k_{y}=\frac{n_{y}}{2} \cdot k_{z}-\frac{n_{z} \pi}{L} \\
E_{k} & =\frac{\hbar^{2}}{2 m}\left(\frac{\pi}{2}\right)^{2}\left(n_{x}^{2}+n_{y}^{2}+n_{z}\right) \quad n_{x}-n_{y}, n_{z}=1,2,3, \ldots \\
& =1,426 \times 10^{-2} \mathrm{e} V\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
\end{aligned}
$$

The lowest $\quad n_{x}=n_{y}=n_{8}+1 \quad E_{k}=4278 \times 10^{-2} \mathrm{eV}$
The nett we $n_{x}=n_{y}=1, n_{z}=2$

$$
E_{k}=1.425 \times 0^{-2} e v \times 6=8,566 \times 0^{-2} 2 v
$$

