Solid State Physics 460-Lecture 2 Structure of Crystals (Kittel Ch. 1)

See many great sites like "Bob's rock shop" with pictures and crystallography information on the web at www.rockhounds.com/rockshop/xtal/index.html

Ideal crystals are simple and relevant!

- Many solids are made of crystallites that are microscopic - but contain $\sim 10^{20}$ atoms!

Crystals

- A crystal is a repeated array of atoms
- Examples

Array of atoms
Each atom is identical

Two Dimensional Crystals

(Easier to draw in 2 dimensions - 3 dimensions later)

Two Dimensional Crystals

Two Dimensional Crystals

Basis

Lattice

- Infinite number of possible crystals
- Finite number of possible crystal types

Lattices and Translations

- The entire infinite lattice is specified by 2 primitive vectors a_{1} and a_{2} (also a_{3} in $3-d$)
- $T\left(n_{1}, n_{2}, \ldots\right)=n_{1} a_{1}+n_{2} a_{2}\left(+n_{3} a_{3}\right.$ in $\left.3-d\right)$, where the n 's are integers
- Note: the primitive vectors are not unique different vectors a_{1} and a_{2} can define the same lattice

Primitive Cell

- A representative cell

- Translation of a primitive cell fills space
- $T\left(n_{1}, n_{2}, \ldots\right)=n_{1} a_{1}+n_{2} a_{2}$ where the n 's are integers
- Note: the primitive cells are not unique different cells can fill all space
- All primitive cells have the same are (volume)

Two Dimensional Lattices Primitive Cell and Wigner-Seitz Cell

Possible Two Dimensional Lattices

- Special angles $\phi=90$ and 60 degrees lead to special crystal types
- In addition to translations, the lattice is invariant under rotations and/or reflections

Possible Two Dimensional Lattices

General oblique

Square
4-fold rot., reflect.

Rectangular
2-fold rot., reflect.

Centered Rectangular 2-fold rot., reflect.

- These are the only possible special crystal types in two dimensions

More on Two Dimensional Lattices

- Why is it imposible to have a crystal with a five-fold rotation symmetry?
- Why is the centered square not a special type?

Classification of Crystal Structures

- Crystal structures classified by:
- Translation symmetry
- Only the Bravais lattice
- Limited number of possible Bravais lattice types
- Rotation, Inversion, reflection symmetry
- Depends upon basis
- Limited number of possible crystal types
- Examples in 2 dimensions
- (3 dimensions later)
- See Kittel for lists of possible translation types.
- See other crystallography references for lists of all possible crystal types

Summary at this point

- A crystal is a repeated array of atoms
- Crystal

Lattice of points
(Bravais Lattice) Basis of atoms

- Crystals can be classified into a small number of types - See text for more details

Examples of Crystals Close packing of spheres in a 2-d crystal

- Each sphere has 6 equal neighbors
- Close packing for spheres
- Hexagonal symmetry (rotation by 60 degrees)
- Actually occurs for rare gas atoms (spherical) on a flat surface

Crystalline layers with >1 atom basis

CuO_{2} Square Lattice
Square Lattice

- One CuO_{2} layer in the High Tc superconductors
- Square lattice
- One basis unit on each site

Crystalline layers with >1 atom basis

Honeycomb Lattice (graphene or BN layer)

Hexagonal Lattice

Basis
2 C atoms
or BN pair

- A single layer of graphitic carbon (graphene)
- The two atoms in the cell are both Carbon
- A single layer of hexagonal boron nitride (BN)
- The two atoms in the cell are B and N

Next Time

- More on Crystal Lattices - Continue Kittel, Ch. 1
- 3 Dimensions
- Lattice planes
- Examples of crystals

