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Solid State Physics 460 - Lecture 3
Diffraction and the Reciprocal Lattice

(Kittel Ch. 2)

Diffraction (Bragg Scattering) from a powder of crystallites - real 
example of image at right  from 
http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html
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Crystals From Previous Lectures

• A crystal is a repeated array of atoms                          
• Crystal   ¤ Lattice   +     Basis

Crystal
Lattice of points
(Bravais Lattice) Basis of atoms

• Crystals can be classified into a small number of 
types – See text for more details
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How can we study crystal structure? 
• Need probe that can penetrate into crystal                 
• X-rays, neutrons, (high energy electrons)

• X-rays discovered by Roentgen in 1895   - instant 
sensation round the world - view of his wife’s hand

• Neutrons (discovered in 1932) penetrate with 
almost no interaction with most materials
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How can we study crystal structure? 
• X-rays scatter from the electrons 

• intensity proportional to the density n(r)  
• Mainly the core electrons around the nucleus

• High energy electrons
• Also mainly core electrons around the nucleus

• Neutrons scatter from the nuclei 
(and electron magnetic moment)

• In all cases the scattering is caused by the nuclei
or the core electrons near the nuclei

• The scattering amplitude is periodic - the same in each cell 
of the crystal 

• Diffraction is the constructive interference of the scattering 
from the very large number of cells of the crystal
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The crystal can be viewed as made up
of planes of atoms

Lattice

• There are many sets of  parallel planes that can be 
drawn through the crystal

• Low index planes: more dense, more widely spaced
• High index planes: less dense, more closely spaced

a1

a2

φ

(01)

(14)
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Bragg Scattering Law

d
θθ

• Condition for constructive interference (Diffraction):
2d sin θ = n λ

• Maximum λ = 2d
• Only waves with λ smaller than 2d can satisfy the Bragg 

scattering law for diffraction

• For a typical crystal the maximum d ~ 0.1 – 1 nm, so that
λ < ~ 0.1 – 1 nm

2 d sin θ

λ
λ
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What energy x-rays, neutrons…
are required?

• What energy waves (particles) can satisfy the Bragg 
scattering law for a typical crystal?

λ < 0.1 – 1 nm
From Homework 0:    λ=0.1 nm λ=1.0 nm

X-rays E= 1.24 104 eV E= 1.24 103 eV

Neutron E= 8.16 10-2 eV E= 8.16 10-4 eV

Electron E= 1.50 102 eV E= 1.50 eV
See Fig. 1, Ch. 2 of Kittel for plot of E vs. λ

X-rays and neutrons at these energies penetrate solids and are useful
for  studies of the bulk material

Electrons of these energies scatter very strongly – they do not penetrate
far and they can be used to study surfaces
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Example of scattering  
• Aluminum (Al) is  fcc with 

a = 0.405 nm
• What is minimum energy 

x-ray that can satisfy the 
Bragg condition?

X

y

z

• The largest distance between planes is for 111 planes: 
d = (a √3 )/3 = a /√3

• Maximum λ is 2d = 2 a /√3 = 0.468 nm

• Using  E = hν = hc/λ , (hc = 1.24 x 10-6 m = 1.24 103 nm), the 
minimum energy x-ray for Bragg scattering is 2.65 keV.

• Higher energy x-rays are needed for diffraction from all other 
planes in the crystal
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Why is a powder “better” than a 
single crystal for x-ray diffraction?

•For fixed λ, Bragg condition satisfied only for certain angles θ
•Random powder automatically averages over all angles 
•Diffraction (Bragg Scattering) from a powder of crystallites 
•Example of too few crystallites (left) and better sample (right)
http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

Each ring is a different
plane in the crystal

2θ
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Single crystal diffraction

Rotate both sample and 
detector about axis

2θ

•Crystal must be oriented in all directions 
in 3D space using “Gonier Spectrometer”

•Observe scattering only at Bragg angles for a fixed
wavelength x-ray or neutrons or ….. 
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Alternative approach -
energy dispersive diffraction

•For fixed angle θ , vary the energy (i.e., λ) to satisfy Bragg condition
for a sample (the “experiment”) 
•X-rays over broad energy range now available at synchrotrons like 
the Advanced Photon Source at Argonne 
•Note that diffraction from a single crystallite is also used at the 
monochrometer to select X-rays with desired wavelength 
•See http://www.aps.anl.gov/

electrons

Photons - broad
range of energies

Single crystal
monchrometer

Experiment

Photons with 
selected 
energy

synchrotron
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Periodic Functions and Fourier Analysis
• Any periodic function can be expressed in terms 

of its periodic Fourier components (harmonics).
• Example of density n(x) in 1 D crystal:

n(x) = n0 + Σm>0[Cm cos (2π m x/a) + Sm sin (2π m x/a)]

• Easier expression:
n(x) = Σm nmexp( i 2π p x/a)

(easier because exp( a + b) = exp( a ) exp( b) )

• Expression for Fourier Components:
nm =   ∫

0
a dx n(x) exp( - i 2π m x/a)
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Reciprocal Lattice and 
Fourier Analysis in 1D

• In 1D,  b = 2 π /a
• Periodic function f(x): 

f(x) = Σm fm exp( i 2π m x/a)
= Σm fm exp( i m b x), m = integer

• The set of all integers x b are the reciprocal lattice
a

Real Lattice

Recip. Lattice b
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Fourier Analysis in 3 dimensions 
• Define vector position r = (x,y,z)        [ r = (x,y) (2D) ]
• Fourier analysis

f(r) = ΣG fG exp( i G . r)  
where the G’s are vectors, i.e., 

exp( i G . r) = exp( i (Gx x + Gy y + Gz z) )
= exp( i Gx x ) exp( i Gy y ) exp( i Gz z)

• A periodic function satisfies 
f(r) =  f(r + T) where T is any translation vector
T(n1,n2,…) = n1 a1 + n2 a2 + n3 a3, integer n’s

• Thus
f(r + T) = ΣG fG exp( i G . r) exp( i G . T) = f(r)
⇒ exp( i G . T) = 1 ⇒ G . T = 2π x integer
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Reciprocal Lattice
• Reciprocal lattice is defined by the vectors

G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3,
where the m’s are integers and

bi . aj =  2π δij , where  δij = 1,  δij = 0, i ≠ j
• The reciprocal lattice is a set of G vectors that is 

determined by the real space Bravais lattice 

• The only information about the actual basis of 
atoms is in the quantitative values of the Fourier 
components  fG in the Fourier analysis

f(r) = ΣG fG exp( i G . r) 
• Inversion formula:

fG = ∫cell dr f(r) exp(- i G . r)
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Reciprocal Space
• Reciprocal space is the space of Fourier components
• The Fourier transform of a general function g(r):

g(r) = ∫all k dk g(k) exp( i k . r), 
g(k) = (1/2π) ∫all r dr g(r) exp( - i k . r), 

where k = (kx, ky, kz ) where kx, ky, kz are continuous variables 
that  can have any  values.  

• k = (kx, ky, kz ) is a vector in reciprocal space
• Reciprocal space is defined independent of any crystal!

•The reciprocal lattice is the set of Fourier components
G(m1,m2, m3) = m1 b1 + m2 b2 + m3 b3,which are vectors that form a lattice in reciprocal space 

•For a periodic crystal the only non-zero Fourier components 
are for k = G
•For each Bravais lattice in “real space” there is a unique 
reciprocal lattice in reciprocal space. 
•Real lattice:  Set of translations T(n1,n2,…) = n1 a1 + n2 a2 + n3 a3
Reciprocal lattice:  Set of     G(m1,m2, m3) = m1 b1 + m2 b2 + m3 b3
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Real & Reciprocal lattices in 2 D

• For each Bravais lattice, there is a reciprocal lattice
• b1 perpendicular to a2 -- b2 perpendicular to a1

• Wigner-Seitz Cell of Reciprocal lattice called the 
“First Brillouin Zone” or simply “Brillouin Zone”

a1

a2
b2

b1

b2

b1

Wigner-Seitz Cell

a1

a2

Brillouin Zone
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Reciprocal Lattice in 3D

• The primitive vectors of the reciprocal lattice are 
defined by the vectors bi that satisfy   

bi . aj =  2π δij , where  δij = 1,  δij = 0, i ≠ j

• How to find the b’s?

• Note: b1 is orthogonal to a2 and a3, etc.
• In 3D, this is found by noting that (a2 x a3 ) is 

orthogonal to a2 and a3

• Also volume of primitive cell V = |a1 . (a2 x a3 )|
• Then bi =  (2π / V ) (aj x ak ), where i ≠ j ≠ k
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Three Dimensional Lattices
Simplest examples

• Long lengths in real space imply short lengths in 
reciprocal space and vice versa

a1

Simple Orthorhombic Bravais Lattice
with a3 > a2 > a1

a2

b1

Reciprocal Lattice
Note: b1 > b2 > b3

b2

kx

ky

kz

x

y

z

a3
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Three Dimensional Lattices
Simplest examples

• Reciprocal lattice is also hexagonal, but rotated
• See homework problem in Kittel

a1

Hexagonal Bravais Lattice

a2

a3

b1

Reciprocal Lattice

b2

b3
kx

ky

kz

x

y

z
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Face Centered - Body Centered Cubic
Reciprocal to one another

a1

a3

a2

Primitive vectors and the
conventional cell of fcc lattice

x

y

z

Reciprocal lattice is
Body Centered Cubic

b2

b1

b3

2π/a

kx

ky

kz

a
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Face Centered - Body Centered Cubic
Reciprocal to one another

b1

b3

b2

Reciprocal lattice is
Face Centered Cubic

kx

ky

kz

Primitive vectors and the
conventional cell of bcc lattice

a2

a1

a3

x

y

z

a
2π/a
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Face Centered Cubic

Wigner-Seitz Cell for
Face Centered Cubic Lattice 

Brillouin Zone =
Wigner-Seitz Cell for

Reciprocal Lattice

y
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Body Centered Cubic

Wigner-Seitz Cell for
Body Centered Cubic Lattice

Brillouin Zone =
Wigner-Seitz Cell for

Reciprocal Lattice
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Scattering and Fourier Analysis

• Note that k is a vector in reciprocal space with |k| = 2π/λ
• The in and out waves have the form:

exp( i kin. r - i ωt)  and  exp( i kout. r - i ωt)
• If the incoming wave drives the electron density, which 

then radiates waves, the amplitude of the outgoing wave 
is proportional to:

∫space dr n(r) exp(i (kin - kout ). r)

d

λ
kin kout

λ
|k| = 2π/λ
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Scattering and Fourier Analysis

d

λ
kin kout

λ
|k| = 2π/λ∆k = G

• Define   ∆k = kin - kout

• Then we know from Fourier analysis that 
∫space dr n(r) exp(- i ∆k . r) = N cell nG

only if ∆k = G, where G is a reciprocal lattice vector
• Otherwise the integral vanishes
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Elastic Scattering

d

λ
kin kout

λ
|k| = 2π/λ∆k = G

• For elastic scattering (energy the same for in and out 
waves)   

| kin |  = | kout |, or  kin
2 =  kout

2 = | kin + G |2

• Then one arrives at the condition for diffraction:  (using -
G in expression above)

2 kin. G = G2

• Equivalent to the Bragg condition – see next lecture
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Summary on Reciprocal lattice
• All Crystals have a lattice of translations in real space, 

and a lattice of Fourier components in Reciprocal 
space

• Reciprocal lattice defined as
• G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3 ,

where the b’s are primitive vectors defined by
bi . aj =  2π δij , where  δij = 1,  δij = 0, i ≠ j

• Any periodic function can be written
f(r) = ΣG fGexp( i G . r)  

• The reciprocal lattice is defined strictly by translations 
(it is a Bravais lattice in reciprocal space)

• Information about the basis for the actual crystal is in 
the values of the Fourier coefficients fG
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Next Lecture

• More on use of reciprocal lattice

• Diffraction from crystals – Ewald construction

• Continue reading Kittel Ch 2

• Start Crystal Binding (Chapter 3) if there is time
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