Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

Ewald Construction

Recall from previous lectures

- Definition of a crystal - Lattice + Basis
- Reciprocal lattice - Lattice in Fourier space (reciprocal space)
- Diffraction from crystals - Bragg Condition $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
- Diffraction and the reciprocal lattice
- Today:
- Diffraction and the reciprocal lattice continued Ewald construction and the Brillouin Zone (BZ)

$\xrightarrow{\text { Recall from }}$ Lecture 3 Summary: Real and Reciprocal lattices

- Crystal lattice of translations:

$$
\mathbf{T}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots\right)=\mathrm{n}_{1} \mathbf{a}_{\mathbf{1}}+\mathrm{n}_{2} \mathbf{a}_{\mathbf{2}}+\mathrm{n}_{3} \mathbf{a}_{\mathbf{3}}
$$

- Reciprocal lattice:
$\mathbf{G}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots\right)=\mathrm{m}_{1} \mathbf{b}_{\mathbf{1}}+\mathrm{m}_{2} \mathbf{b}_{\mathbf{2}}+\mathrm{m}_{3} \mathbf{b}_{\mathbf{3}}$,
where

$$
\mathbf{b}_{\mathbf{i}} \cdot \mathbf{a}_{\mathbf{j}}=2 \pi \delta_{\mathrm{ij}}, \text { where } \delta_{\mathrm{ij}}=1, \delta_{\mathrm{ij}}=0, \dot{i} \neq \boldsymbol{j}
$$

- Any periodic function can be written
$f(r)=\Sigma_{G} f_{G} \exp (i G \cdot r)$
- Information about the basis for the actual crystal is in the values of the Fourier coefficients

$$
f_{G}=\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d^{3} r f(r) \exp (-i G \cdot r)
$$

Bragg Scattering Law

- Condition for constructive interference (Diffraction): $2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
- Maximum $\lambda=2 \mathrm{~d}$
- Only waves with λ smaller than 2d can satisfy the Bragg scattering law for diffraction
- For a typical crystal the maximum d ~ 0.1 - 1 nm , so that $\lambda<\sim 0.1-1 \mathrm{~nm}$

Recall from

LectureScattering and Fourier Analysis

- Note that \mathbf{k} is a vector in reciprocal space with $|\mathbf{k}|=2 \pi / \lambda$
- The in and out waves have the form:

$$
\exp \left(\mathrm{i} \mathrm{k}_{\mathrm{in}} \cdot \mathbf{r}-\mathrm{i} \omega \mathrm{t}\right) \text { and } \exp \left(\mathrm{i} \mathbf{k}_{\text {out }} \mathbf{r}-\mathrm{i} \omega \mathrm{t}\right)
$$

- If the incoming wave drives the electron density, which then radiates waves, the amplitude of the outgoing wave is proportional to:

$$
\int_{\text {space }} \operatorname{dr} n(\mathbf{r}) \exp \left(\mathbf{i}\left(\mathbf{k}_{\text {in }}-\mathbf{k}_{\text {out }}\right) \cdot \mathbf{r}\right)
$$

Recall from

LectureScattering and Fourier Analysis

- Define $\Delta k=k_{\text {in }}-k_{\text {out }}$
- Then we know from Fourier analysis that

$$
\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d \mathbf{r} n(\mathbf{r}) \exp (-\mathrm{i} \Delta \mathbf{k} \cdot \mathbf{r})=\mathbf{n}_{\mathbf{G}}
$$

only if $\Delta k=G$, where \mathbf{G} is a reciprocal lattice vector

- Otherwise the integral vanishes

Note: These statements are for a perfect crystal of size \longrightarrow infinity. See prob. Kittel 2.4 for a finite crystal where the scattering is peaked at $\Delta k=G$ with a finite width. Physics 460 F 2006 Lect 5

Elastic Scattering

- For elastic scattering (energy the same for in and out waves)

$$
\left|\mathbf{k}_{\text {in }}\right|=\left|\mathbf{k}_{\text {out }}\right| \text {, or } k_{\text {in }}^{2}=\mathrm{k}_{\text {out }}^{2}=\left|\mathbf{k}_{\text {in }}+\mathbf{G}\right|^{2}
$$

- Then one arrives at the condition for diffraction: (using \mathbf{G} in expression above)

$$
2 \mathbf{k}_{\text {in }} \cdot \mathbf{G}=\mathrm{G}^{2}
$$

G Is any one of the recip. lattice vectors

- Equivalent to the Bragg condition - see next lecture

Ewald Construction .•

- Condition for diffraction:
$k_{\text {out }}=\mathbf{k}_{\text {in }}+\mathbf{G}$
and
- $\left|2 k_{\text {in }} \cdot G\right|=|G|^{2}=2\left|k_{\text {in }}\right||G| \sin \theta$

$$
\Rightarrow \quad|G|=2\left|k_{\text {in }}\right| \mid \sin \theta
$$ (note sine function, not cosine)

Why?
Discussed in class

Equivalent to Bragg Condition

- From last slide,

$$
|\mathrm{G}|=2\left|\mathrm{k}_{\mathrm{in}}\right| \sin \theta
$$

- But $\left|\mathrm{k}_{\text {in }}\right|=2 \pi / \lambda$, and $|\mathrm{G}|=\mathrm{n}(2 \pi / \mathrm{d})$, where d $=$ spacing between planes (see homework, Kittel prob. 2-1)
- \Rightarrow Bragg condition Rd $\sin \theta=\mathrm{n} \lambda$

Geometric Construction of Diffraction Conditions ${ }^{\bullet}$

- Recall $k_{\text {in }}-k_{\text {out }}=G$ and $\left|k_{\text {in }}\right|=\left|k_{\text {out }}\right|$
- Consequence of condition | $2 \mathrm{k}_{\text {in }} \cdot \mathrm{G} \mid=\mathrm{G}^{2}$
- The vector $k_{i n}$ (and $k_{\text {out }}$) lies along the perpendicular bisecting plane of a \mathbf{G} vector
- One example is shown

Diffraction and the Brillouin Zone

- Brillouin Zone - (BZ) the Wigner-Seitz cell of the reciprocal lattice
- Formed by perpendicular bisectors of G vectors

- Special Role of Brillouin Zone
- Diffraction occurs only for k on surface of Brillouin Zone
- No diffraction occurs for any k inside the first Brillouin Zone
- Important later in course Physics 460 F 2006 Lect 5

Comparison of diffraction from different lattices

- The Bragg condition can also be written

$$
\begin{aligned}
& |G|=2\left|k_{\text {in }}\right| \sin \theta \\
& \Rightarrow \sin \theta=(\lambda / 4 \pi)|G|
\end{aligned}
$$

- Thus the ratios of the sines of the angles for diffraction are given by: $\sin \theta_{1} / \sin \theta_{2}=\left|G_{1}\right| /\left|G_{2}\right|$
- Each type of lattice has characteristic ratios the positions of diffraction peaks as a function of $\sin \theta$
- Simple scaling with λ

Experimental Powder Pattern

- Diffraction peaks at angles satisfying the Bragg condition
- Experimental example

http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/teaching.html

Comparison of diffraction from different lattices

- Ratios $\boldsymbol{\operatorname { s i n }} \theta_{\mathrm{i}} / \boldsymbol{\operatorname { s i n }} \theta_{0}=\left|\mathrm{G}_{\mathrm{i}}\right| /\left|\mathrm{G}_{\mathrm{o}}\right|$, where θ_{0} is the lowest angle peak (smallest G)
- Easiest to give ratios of squares $\mathrm{G}_{\mathrm{i}}{ }^{2} / \mathrm{G}_{0}{ }^{2}$

Simple Cubic lattice

(\mathbf{G} in units of $2 \pi / a$)

G_{i}	$\mathrm{G}_{\mathrm{i}}{ }^{2}$	ratio
$1,0,0$	1	1
$1,1,0$	2	2
$1,1,1$	3	3
$2,0,0$	4	4
$2,1,0$	5	5

Comparison of diffraction from different lattices - continued

FCC real space lattice (G in units of $2 \pi / a$) $\begin{array}{llc}\mathbf{G}_{\mathrm{i}} & \mathrm{G}_{\mathrm{i}}{ }^{2} & \text { ratio } \\ 1,1,1 & 3 & 1 \\ 2,0,0 & 4 & 4 / 3 \\ 2,2,0 & 8 & 8 / 3 \\ 3,1,1 & 11 & 11 / 3 \\ 2,2,2 & 12 & 4 \\ 4,0,0 & 16 & 1 / 3\end{array}$

BCC real space lattice
(\mathbf{G} in units of $2 \pi / a$)
$\begin{array}{lll}\mathbf{G}_{\mathbf{i}} & \mathbf{G}_{\mathbf{i}}{ }^{2} & \text { ratio } \\ 1,1,0 & \mathbf{2} & \mathbf{1} \\ 2,0,0 & \mathbf{4} & \mathbf{2} \\ 2,1,1 & 6 & 3 \\ 2,2,0 & 8 & 4 \\ 3,1,0 & 10 & 5 \\ 2,2,2 & 12 & 6\end{array}$
Same ratios as Simple cubic!

Example of $\mathrm{KCl}, \mathrm{KBr}$

- See Kittel Fig. 17
- KCI and KBr have fcc structure - expect fcc "powder patterns"
- But KCl has a special feature
- K+ and CI- have the same number of electrons, they scatter x-rays almost the same ---- thus KCl has
- a pattern like simple cubic

Why does this happen?

Comparison of diffraction from different lattices - continued

- Lower symmetry lattices
- Example - Orthorhombic

$$
\mathbf{G}=\left(\mathrm{n}_{1} 2 \pi / \mathrm{a}_{1}, \mathrm{n}_{2} 2 \pi / \mathrm{a}_{2}, \mathrm{n}_{3} 2 \pi / \mathrm{a}_{3}\right)
$$

- Lengths of G 's are in general not any special numbers since the a's can be in any ratios
- Many lines in diffraction pattern because of many different values of |G|
- Hexagonal - length along c axis not related to lengths perpendicular to \mathbf{c} axis

Fourier Analysis of the basis

- The intensity of the diffraction at each \mathbf{G} is proportional to the square of the amplitude of the Fourier component

$$
n_{G}=\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d r n(r) \exp (-i G \cdot r)
$$

- It is also possible to regard the crystal density $n(r)$ as a sum of atomic-like densities $n^{\text {atom }}\left(r-R_{i}\right)$, centered at point R_{i}

$$
n(r)=\sum_{\text {all } i} n^{\text {atom } i}\left(r-R_{i}\right)
$$

- Then also

$$
n_{G}=\sum_{i \text { in cell }} \int_{\text {space }} d r n^{\text {atom } i}\left(r-R_{i}\right) \exp (-i G \cdot r)
$$

One atom per cell and Form Factor

- Then one can set $\mathrm{R}_{\mathrm{i}}=0$ and n_{G} is the Fourier transform of one atom density

$$
n_{G}=\int_{\text {space }} d r n^{\text {atom }}(r) \exp (-i G \cdot r)
$$

- Called Form Factor
- Example in Kittel

More than one atom per cell

- $\mathbf{n}_{\mathrm{G}}=\sum_{\mathrm{i} \text { in cell }} \int_{\text {space }} d r \mathbf{n}^{\text {atom } \mathrm{i}}\left(\mathrm{r}-\mathrm{R}_{\mathrm{i}}\right) \exp (-\mathrm{i} G \cdot r)$

$$
=\sum_{i \text { in cell }} \exp \left(-\mathbf{i} \mathbf{G} \cdot \mathbf{R}_{\mathbf{i}}\right)
$$

$$
\int_{\text {space }} d r n^{\text {atom } i}\left(r-R_{i}\right) \exp \left(-i G \cdot\left(r-R_{i}\right)\right)
$$

$=\sum_{i \text { in cell }} \exp \left(-i G \cdot R_{i}\right)$
$\int_{\text {space }} d r n^{\text {atom } i}(r) \exp (-i G \cdot r)$
$=\sum_{i \text { in cell }} \exp \left(-i \mathbf{G} \cdot \mathbf{R}_{\mathrm{i}}\right) \mathbf{n}_{\mathrm{G}}{ }^{\text {atom } \mathrm{i}}$

- Interpretation: Structure Factor =

Form factor $\mathbf{n}_{\mathrm{G}}{ }^{\text {atom } \mathrm{i}} \mathbf{x}$ phase factor $\exp \left(-\mathrm{iG} \cdot \mathbf{R}_{\mathbf{i}}\right)$ for each atom in unit cell Physics 460 F 2006 Lect 5

Structure factor

- Often the basis contains more than one atom that is same element, e.g., diamond structure
- Then $\mathbf{n}_{\mathrm{G}}{ }^{\text {atom } \mathrm{i}}=\mathrm{n}_{\mathrm{G}}{ }^{\text {atom }}$ is the same for each i and

$$
\begin{aligned}
\mathbf{n}_{G} & =\sum_{\mathrm{i} \text { in cell }} \exp \left(-i G \cdot R_{i}\right) n_{G} \text { atom } i \\
& =n_{G} \text { atom } \sum_{i \text { in cell }} \exp \left(-i G \cdot R_{i}\right)
\end{aligned}
$$

- Define "pure" structure factor

$$
S_{G}^{0}=\left(1 / N_{\text {cell }}\right) \sum_{i \text { in cell }} \exp \left(-i G \cdot \mathbf{R}_{i}\right)
$$

where $\mathbf{N}_{\text {cell }}=$ number of atoms in cell

- Then $\mathbf{n}_{\mathrm{G}}=\mathrm{N}^{0} \mathbf{S}_{\mathrm{G}} \mathrm{n}_{\mathrm{G}}{ }^{\text {atom }}$

Body Centered Cubic viewed as

 Simple Cubic with 2 points per cell $\mathbf{S}_{\mathrm{G}}{ }=(\mathbf{1} / 2) \sum_{\mathrm{i}=1,2} \exp \left(-\mathrm{i} \mathrm{G} \cdot \mathrm{R}_{\mathrm{i}}\right)$$=(1 / 2)\left(1+\exp \left(-i G \cdot R_{2}\right)\right.$
$=(1 / 2) \exp \left(-i G \cdot R_{2} / 2\right)$
$\left[\exp \left(i G \cdot R_{2} / 2\right)+\exp \left(-i G \cdot R_{2} / 2\right)\right]$
$=\exp \left(-i G \cdot R_{2} / 2\right) \cos \left(G \cdot R_{2} / 2\right)$
Result: If $\mathbf{G}=\left(\mathbf{v}_{1} \mathbf{v}_{\mathbf{2}} \mathbf{v}_{\mathbf{3}}\right) \mathbf{2 \pi / a}$ $\left|S_{G}{ }_{G}\right|=1$ if sum of integers is even
$\left|\mathbf{S}^{0}{ }_{G}\right|=\mathbf{0}$ if sum is odd

Points at $R_{1}=(0,0,0)$;

$$
R_{2}=(1,1,1) a / 2
$$

Same as we found before! FCC reciprocal lattice

Face Centered Cubic viewed as Simple Cubic with 4 points per cell
 $\mathbf{S}_{\mathrm{G}}{ }^{=}=(1 / 4) \sum_{\mathrm{i}=1,4} \exp \left(-\mathrm{i} G \cdot \mathbf{R}_{\mathrm{i}}\right)$

Result:
If $\mathbf{G}=\left(\mathbf{v}_{1} \mathbf{v}_{\mathbf{2}} \mathrm{v}_{\mathbf{3}}\right) \mathbf{2 \pi / a}$ then
$S^{0}{ }_{G}=1$ if all integers are odd or all are even
$\mathbf{S}_{\mathrm{G}}{ }_{\mathrm{G}}=0$ otherwise
Same as we found before! BCC reciprocal lattice

Points at $\quad(0,0,0) ;(1,1,0) a / 2 ;$
$(1,0,1) a / 2 ;(0,1,1) a / 2$
Points at $\quad(0,0,0) ;(1,1,0) a / 2 ;$
$(1,0,1) a / 2 ;(0,1,1) a / 2$

Structure factor for diamond

- Example: diamond structure

$$
S_{G}^{0}=(1 / 2) \Sigma_{i=1,2} \exp \left(-i G \cdot R_{i}\right)
$$

- $R_{1}=+(1 / 8,1 / 8,1 / 8) a$ $R_{2}=-(1 / 8,1 / 8,1 / 8) a$
- Homework problem
- Similar approach would apply to a graphite plane

Summary - Diffraction \& Recip. Lattice

- Bragg Condition for diffraction
- Fourier Analysis and the Reciprocal Lattice $\mathbf{G}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots\right)=\mathrm{m}_{1} \mathbf{b}_{1}+\mathrm{m}_{2} \mathbf{b}_{2}+\mathrm{m}_{3} \mathbf{b}_{3}$, where the \mathbf{b} 's are primitive vectors defined by

$$
\mathbf{b}_{\mathbf{i}} \cdot \mathbf{a}_{\mathrm{j}}=2 \pi \delta_{\mathrm{ij}}, \text { where } \delta_{\mathrm{ij}}=1, \delta_{\mathrm{ij}}=0, \mathbf{i} \neq \mathbf{j}
$$

- Examples of Reciprocal lattice: fcc, bcc, ...
- Ewald Construction
- Diffraction for $\mathbf{k}_{\text {in }}, \mathbf{k}_{\text {out }}$ in planes - perp. bisectors of \mathbf{G} 's
- Defines Brillouin Zone - no diffraction in first BZ
- Information about the actual crystal is in the values of the Fourier coefficients f_{G}

$$
f_{G}=\left(1 / V_{\text {cell }}\right) \int_{\text {cell }} d r f(r) \exp (-i G \cdot r)
$$

- Form factor, "Pure" Structure factor

Quasicrystals

- Not periodic in sense described before
- Example a crystal with periodicity a with a density wave that is a different period a' with a'la not a rational number $n(x)=n_{1} \cos (2 \pi x / a)+n_{2} \cos \left(2 \pi x / a^{\prime}\right)$ never repeats!
- Examples in higher dimensions

Orientation order without translational order Penrose Tiles
Five fold symmetry in x-ray patterns

Penrose Tiles

- Many examples Nice WWW sites
http://www.traipse.com/penrose_tiles/index.html

See this site for a Java program for Penrose tiles http://www.geocities.com/SiliconValley/Pines/1684/Penrose.html

Next Time

- Crystal Binding (Chapter 3)

