Elasticity Stress and Strain in Crystals Kittel – Ch 3

Physics 460 F 2006 Lect 7

1

Elastic Behavior is the fundamental distinction between solids and liquids

Similartity: both are "condensed matter" A solid or liquid in equilibrium has a definite density (mass per unit volume measured at a given temperature) The energy increases if the density (volume) is changed from the equilibrium value - e.g. by applying pressure

Elastic Behavior is the fundamental distinction between solids and liquids

•Difference:

•A solid maintains its shape

•The energy increases if the shape is changed – "shear"

•A liquid has no preferred shape

•It has no resistance to forces that do not change the volume

Strain and Stress

Strain is a change of relative positions of the parts of the material

Stress is a force /area applied to the material to cause the strain

Pressure and Bulk Modulus

- Consider first changes in the volume applies to liquids and any crystal
- General approach: E(V) where V is volume

Can use ether $E_{crystal}(V_{crystal})$ or $E_{cell}(V_{cell})$ since $E_{crystal} = N E_{cell}$ and $V_{crystal} = N V_{cell}$

- Pressure = P = dE/dV (units of Force/Area)
- Bulk modulus B = V dP/dV = V d²E/dV² (same units as pressure)
- Compressibility K = 1/B

Total Energy of Crystal

Physics 460 F 2006 Lect 7

- Up to now in the course we considered only perfect crystals with no external forces
- Elasticity describes:
 - Change in the volume and shape of the crystal when external stresses (force / area) are applied
 - Sound waves
- Some aspects of the elastic properties are determined by the symmetry of the crystal
- Quantitative values are determined by strength and type of binding of the crystal?

Elastic Equations

- The elastic equations describe the relation of stress and strain
- Linear relations for small stress/strain Stress = (elastic constants) x Strain
- Large elastic constants ⇒ the material is stiff a given strain requires a large applied stress
- We will give the general relations but we will consider only cubic crystals
 - The same relations apply for isotropic materials like a glass
 - More discussion of general case in Kittel

Elastic relations in general crystals

- Strain and stress are tensors
- Stress e_{ii} is force per unit area on a surface
 - Force is a vector F_x , F_y , F_z
 - A surface is defined by the normal vector n_x, n_y, n_z
 - 3 x 3 = 9 quantities

- Strain σ_{ij} is displacement per unit distance in a particular direction
 Displacement u
 - Displacement is a vector u_x, u_y, u_z
 - A position is a vector R_x, R_y, R_z
 - 3 x 3 = 9 quantities

Elastic Properties of Crystals

• Definition of strain Six independent variables: $e_1 \equiv e_{xx}$, $e_2 \equiv e_{yy}$, $e_3 \equiv e_{zz}$, $e_4 \equiv e_{yz}$, $e_5 \equiv e_{xz}$, $e_6 \equiv e_{xy}$

• Stress

$$\sigma_1 \equiv \sigma_{xx} = X_x, \sigma_2 \equiv Y_y, \sigma_3 \equiv Z_z$$

 $\sigma_4 \equiv Y_z, \sigma_5 \equiv X_z, \sigma_6 \equiv X_y$

Using the relation $e_{xy} = e_{yx}$ etc.

Here X_y denotes force in x direction applied to surface normal to y.

 $\sigma_{xy} = \sigma_{yx}$ etc.

• Linear relation of stress and strain Elastic Constants C_{ij} $\sigma_i = \Sigma_j C_{ij} e_j$, (i,j = 1,6)

(Also compliances $S_{ij} = (C^{-1})_{ij}$) Physics 460 F 2006 Lect 7

Strain energy

- For linear elastic behavior, the energy is quadratic in the strain (or stress) Like Hooke's law for a spring
- Therefore, the energy is given by:

$$E = (1/2) \Sigma_i e_i \sigma_i = (1/2) \Sigma_{ij} e_i C_{ij} e_j$$
, (i,j = 1,6)

- Valid for all crystals
- Note 21 independent values in general (since $C_{ij} = C_{ji}$)

Symmetry Requirements Cubic Crystals

- Simplification in cubic crystals due to symmetry since x, y, and z are equivalent in cubic crystals
- For cubic crystals all the possible linear elastic information is in 3 quantities:

$$C_{11} = C_{11} = C_{22} = C_{33}$$

$$C_{12} = C_{13} = C_{23}$$

$$C_{44} = C_{55} = C_{66}$$

- Note that by symmetry C₁₄ = 0, etc
- Why is this true for cubic crystals?

Elasticity in Cubic Crystals

• Elastic Constants C_{ij} are completely specified by 3 values C_{11} , C_{12} , C_{44} $\sigma_1 = C_{11} e_1 + C_{12} (e_2 + e_3)$, etc. $\sigma_4 = C_{44} e_4$, etc.

Pure change in volume – compress equally in x, y, z

•Define $\Delta E / V = 1/2 B \delta^2$

•Bulk modulus $B = (1/3) (C_{11} + 2 C_{12})$

Elasticity in Cubic Crystals

• Elastic Constants C_{ij} are completely specified by 3 values C_{11} , C_{12} , C_{44} $\sigma_1 = C_{11} e_1 + C_{12} (e_2 + e_3)$, etc. $\sigma_4 = C_{44} e_4$, etc.

Elasticity in Cubic Crystals

- Pure uniaxial stress and strain
- $\sigma_1 = C_{11} e_1$ with $e_2 = e_3 = 0$
- $\Delta E = (1/2) C_{11} (\delta x/x)^2$
- Occurs for waves where there is no motion in the y or z directions

Also for a crystal under $\sigma_1 \equiv X_x$ stress if there are also stresses $\sigma_2 \equiv Y_y$, $\sigma_3 \equiv Z_z$ of just the right magnitude so that $e_2 = e_3 = 0$

Elastic Waves

- The general form of a displacement pattern is
 Δ<u>r</u> (<u>r</u>) = u(<u>r</u>) <u>x</u> + v(<u>r</u>) <u>y</u> + w(<u>r</u>) <u>z</u>
- A traveling wave is described by
 Δ<u>**r**</u> (<u>**r**</u>,t) = Δ<u>**r**</u> exp(i<u>**k**</u> · <u>**r**</u> -iωt)
- For simplicity consider waves along the x direction in a cubic crystal

Longitudinal waves (motion in x direction) are given by $u(x) = u \exp(ikx - i\omega t)$

Transverse waves (motion in y direction) are given by $v(x) = v \exp(ikx - i\omega t)$

Waves in Cubic Crystals

- Propagation follows from Newton's Eq. on each volume element
- Longitudinal waves: ρ ΔV d² u / dt² = Δx dX_x/ dx = Δx C₁₁ d² u / dx² (note that strain is e₁ = d u / dx)
- Since $\Delta V / \Delta x$ = area and ρ area = mass/length = ρ_L , this leads to

$$\omega^2$$
 = (C_{11} / \rho_L) k^2

 Transverse waves (motion in the y direction) are given by ω² = (C₄₄ / ρ₁) k²

Elastic Waves

- Variations in x direction
- Newton's Eq: ma = F Net force in x direction
- Longitudinal: displacement u along x, $\rho \Delta V d^2 u / dt^2 = \Delta x dX_x / dx = \Delta x C_{11} d^2 u / dx^2$
- Transverse: displacement v along y, $\rho \Delta V d^2 v / dt^2 = \Delta x dY_x / dx = \Delta x C_{44} d^2 v / dx^2$

Net force in y direction

Sound velocities

• The relations before give (valid for any elastic wave):

$$\omega^2 = (C / \rho_L) k^2$$
 or $\omega = s k$

- where s = sound velocity
- Different for longitudinal and transverse waves
- Longitudinal sound waves can happen in a liquid, gas, or solid
- Transverse sound waves exist only in solids
- More in next chapter on waves

Young's Modulus & Poisson Ratio

- Consider crystal under tension (or compression) in x direction
- If there are no stresses $\sigma_2 \equiv Y_y$, $\sigma_3 \equiv Z_z$ then the crystal will also strain in the y and z directions
- Poisson ratio defined by (dy/y) / (dx/x)
- Young's modulus defined by Y = tension/ (dx/x) Homework problem to work this out for a cubic crystal

When does a crystal break?

- Consider crystal under tension (or compression) in x direction
- For large strains, when does it break?
- Crystal planes break apart or slip relative to one another
- Governed by "dislocations"
- See Kittel Chapter 20

Next Time

- Vibrations of atoms in crystals
- Normal modes of harmonic crystal
- Role of Brillouin Zone
- Quantization and Phonons
- Read Kittel Ch 4