Phonons I - Crystal Vibrations Continued (Kittel Ch. 4)

View of triple axis neutron scattering facility at National Research Council of Canada http://neutron.nrc.ca/welcome.htm Physics 460 F 2006 Lect 9

1

Outline

- Examples in higher dimensions
- How many modes are there?
- Quantization and Phonons
- Experimental observation by inelastic scattering
- (Read Kittel Ch 4)

From last lecture Energy due to Displacements

- The energy of the crystal changes if the atoms are displaced.
- Analogous to springs between the atoms
- Suppose there is a spring between each pair of atoms in the chain. For each spring the change is energy is:

• Note: There are no linear terms if we consider small changes u from the equilibrium positions

What determines the "spring constant"

- The energy of the crystal changes if the atoms are displaced because the atoms are bound together!
- Example: Atoms in a line with binding of each pair of atoms that depends of the distance φ (| <u>R</u>_{n+1} – <u>R</u>_n |)
- Examples: Coulomb, Van der Waals attraction, replusive terms, etc. given before

From last lecture Vibration waves in 2 or 3 dimensions

- Newton's Law: $M d^2 \underline{u}_n / dt^2 = \underline{F}_n$
- General Solution:

 $\underline{\mathbf{u}}_{n}(t) = \Delta \underline{\mathbf{u}} \exp(i\underline{\mathbf{k}} \cdot \underline{\mathbf{R}}_{n} - i\omega t)$

Vector dot product - same for all atoms in plane perpendicular to <u>k</u>

Consider the motion to be vibrations of planes of atoms

Like a chain in one dimension!

Vibration waves in 2 or 3 dimensions

- Easier to see with planes vertical and k vector horizontal
- Then Newton's equations become
 M d² <u>u</u>_n / dt² = <u>F</u>_n = C^{eff} [u_{n-1} + u_{n-1} 2 u_n]
- Each plane can move in three directions one longitudinal and two transverse Like one dimension! But the effective spring constant C^{eff} is different for each mode How do we find C^{eff} ?

Central Forces

• For Central Forces the depends only on the distance between the atoms

Geometric factors for Central Forces

 We will consider waves with each atom displaced in the same direction – for simplicity – then we always need the force in the direction of the motion F_{nll}

Physics 460 F 2006 Lect 9

9

Example – fcc with nearest-neighbor $pair potential \phi(\mathbf{r})$

Consider waves with k in x direction Longitudinal motion in x direction

Each atom has 4 neighbors in each of the two neighboring planes with $\cos(\theta)^2 = \frac{1}{2}$

$$C^{eff} = 4 \phi_i''/2$$
 $\omega_k = 2^{3/2} (\phi_i''/M)^{1/2} |sin (ka/2)|$

10

Example – fcc with nearest-neighbor pair potential $\phi(\mathbf{r})$

In the case of nearest neighbor forces, the longitudinal ω_k is higher than the transverse ω_k by the factor $2^{1/2}$

Oscillations in general 3 dimensional crystal with N atoms per cell

Physics 460 F 2006 Lect 9 13

Quantization of Vibration waves

- Max Planck The beginning of quantum mechanics in 1901
- There were observations and experimental facts that showed there were serious issues that classical mechanics failed to explain
- One was radiation the laws of classical mechanics predicted that light radiated from hot bodies would be more intense for higher frequency (blue and ultraviolet) – totally wrong!
- Planck proposed that light was emitted in "quanta" units with energy $E = h v = \hbar \omega$
- Planck's constant h --- "h bar" = $\hbar = h/2\pi$
- The birth of quantum mechanics
- Applies to all waves!

Quantization of Vibration waves

• Each independent harmonic oscillator has quantized energies:

 $e_n = (n + 1/2) hv = (n + 1/2) \hbar \omega$

- We can use this here because we have shown that vibrations in a crystal are independent waves, each labeled by <u>k</u> (and index for the type of mode - 3N indices in a 3 dimen. crystal with N atoms per cell)
- Since the energy of an oscillator is 1/2 kinetic and 1/2 potential, the mean square displacement is given by (1/2) M $\omega^2 u^2 = (1/2) (n + 1/2) h\omega$ where M and u are appropriate to the particular mode (e.g. total mass for acoustic modes, reduced mass for optic modes ,)

Quantization of Vibration waves

- Quanta are called phonons
- Each phonon carries energy $\hbar\omega$
- For each independent oscillator (i.e., for each independent wave in a crystal), there can be any integer number of phonons
- These can be viewed as particles
- They can be detected experimentally as creation or destruction of quantized particles
- Later we will see they can transport energy just like a gas of ordinary particles (like molecules in a gas).

- The in and out waves have the form:
 exp(i k_{in}· r i ω_{in}t) and exp(i k_{out}· r i ω_{out}t)
- For elastic scattering we found that diffraction occurs only for <u>k</u>_{in} <u>k</u>_{out} = <u>G</u>
- For inelastic scattering the lattice planes are vibrating and the phonon supplies wavevector <u>k</u>_{phonon} and frequency ω_{phonon}

Inelastic Scattering and Fourier Analysis

• Result:

Experimental Measurements of Dispersion Curves

- Dispersion curves ω as a function of k are measured by inelastic diffraction
- If the atoms are vibrating then diffraction can occur with energy loss or gain by scattering particle
- In principle, can use any particle neutrons from a reactor, X-rays from a synchrotron, He atoms which scatter from surfaces,

Experimental Measurements of Dispersion Curves

- Neutrons are most useful for vibrations
 For λ ~ atomic size, energies ~ vibration energies
 BUT requires very large crystals (weak scattering)
- X-ray only recently has it been possible to have enough resolution (meV resolution with KeV X-rays!)
- "Triple Axis" rotation of sample and two monochrometers
 Sample
 Detector
 selected energy out
 Single crystal monchrometer
 Single crystal monchrometer

Experimental Measurements of Dispersion Curves

- Alternate approach for Neutrons
 Use neutrons from a sudden burst, e.g., at the new
 "spallation" source at Oak Ridge
 (Largest science project in the US this century!)
- Measure in and out energies by "time of flight"

More on Phonons as Particles

- Quanta are called phonons, each with energy $\hbar\omega$
- <u>k</u> can be interpreted as "momentum"
- What does this mean? NOT really momentum - a phonon does not change the total momentum of the crystal But <u>k</u> is "conserved" almost like real momentum when a phonon is scattered it transfers "<u>k</u>" plus any reciprocal lattice vector, i.e.,

 $\sum \underline{\mathbf{k}}_{before} = \sum \underline{\mathbf{k}}_{after} + \underline{\mathbf{G}}$

Example : scattering of particles

 <u>k</u>_{in} = k_{out} + <u>G</u> ± <u>k</u>_{phonon}
 where + means a phonon is created, - means a phonon is destroyed

Physics 460 F 2006 Lect 9

22

Summary

- Normal modes of harmonic crystal Independent oscillators labeled by wavevector k and having frequency $\omega_{\rm k}$
- The relation ω_k as a function of k is called a dispersion curve 3N curves for N atoms/cell in 3 dimensions
- Quantized energies (n + 1/2) h ω_k
- Can be viewed as particles that can be created or destroyed each carries energy and "momentum"
- "Momentum" conserved modulo any **G** vector
- Measured directly by inelastic diffraction difference in in and out energies is the quantized phonon energy
- Neutrons, X-rays,

Next time

- Phonon Heat Capacity
- One of the early mysteries solved by quantum mechanics obey Bose-Einstein Statistics
- Density of states of phonons
- Debye and Einstein Models
- (Read Kittel Ch 5)