Part II - Electronic Properties of Solids Lecture 12: The Electron Gas (Kittel Ch. 6)

Physics 460 F 2006 Lect 12

Outline

- Overview role of electrons in solids
- The starting point for understanding electrons in solids is completely different from that for understanding the nuclei (But we will be able to use many of the same concepts!)
- Simplest model Electron Gas
 Failure of classical mechanics
 Success of quantum mechanics
 Pauli Exclusion Principle, Fermi Statistics
 Energy levels in 1 and 3 dimensions
- Similarities, differences from vibration waves
- Density of States, Heat Capacity
- (Read Kittel Ch 6)

Role of Electrons in Solids

- Electrons are responsible for binding of crystals -they are the "glue" that hold the nuclei together Types of binding (see next slide) Van der Waals - electronic polarizability Ionic - electron transfer Covalent - electron bonds Metallic - more about this soon
- Electrons are responsible for important properties: Electrical conductivity in metals (But why are some solids insulators?) Magnetism Optical properties
 -

Covalent Binding

Starting Point for Understanding Electrons in Solids

 Nature of a metal: Electrons can become "free of the nuclei" and move between nuclei since we observe electrical conductivity

• Electron Gas

Simplest possible model for a metal - electrons are completely "free of the nuclei" - nuclei are replaced by a smooth background ---"Electrons in a box"

Electron Gas - History

- Electron Gas model predates quantum mechanics
- Electrons Discovered in 1897
 J. J. Thomson
- Drude-Lorentz Model -Electrons - classical particles free to move in a box

Drude-Lorentz Model (1900-1905)

- Electrons as classical particles moving in a box
- Model: All electrons contribute to conductivty. Works! Still used!
- But same model predicted that all electrons contribute to heat capacity. Disaster. Heat capacity is MUCH less than predicted.

Paul Drude

Quantum Mechanics

- 1911: Bohr Model for H
- 1923: Wave Nature of Particles Proposed Prince Louie de Broglie
- 1924-26: Development of Quantum Mechanics Schrodinger equation
- 1924: Bose-Einstein Statistics for Identical Particles (phonons, ...)
- 1925-26: Pauli Exclusion Principle, Fermi-Dirac Statistics (electrons, ...)
- 1925: Spin of the Electron (spin = 1/2)
 G. E. Uhlenbeck and S. Goudsmit

Schrodinger

Schrodinger Equation

• Basic equation of Quantum Mechanics

 $[-(\hbar/2m)\nabla^{2} + V(\underline{r})]\Psi(\underline{r}) = E\Psi(\underline{r})$

where

m = mass of particle V(\underline{r}) = potential energy at point \underline{r} $\nabla^2 = (d^2/dx^2 + d^2/dy^2 + d^2/dz^2)$ E = eigenvalue = energy of quantum state $\Psi(\underline{r})$ = wavefunction n (\underline{r}) = $|\Psi(\underline{r})|^2$ = probability density

 ∇

Schrodinger Equation - 1d line

 Suppose particles can move freely on a line with position x, 0 < x < L

0

- Schrodinger Eq. In 1d with V = 0 - $(\hbar^2/2m) d^2/dx^2 \Psi(x) = E \Psi(x)$
- Solution with $\Psi(x) = 0$ at x = 0,L $\Psi(x) = 2^{1/2} L^{-1/2} \sin(kx)$, $k = m \pi/L$, m = 1,2, ...(Note similarity to vibration waves) Factor chosen so $\int_0^L dx | \Psi(x) |^2 = 1$
- E (k) = ($\hbar^2/2m$) k²

• Solution with $\Psi(x) = 0$ at x = 0,L

Examples of waves - same picture as for lattice vibrations except that here $\Psi(x)$ is a continuous wave instead of representing atom displacements

Electrons on a line

 For electrons in a box, the energy is just the kinetic energy which is quantized because the waves must fit into the box

• $E(k) = (\hbar^2/2m) k^2$, $k = m \pi/L$, m = 1, 2, ...

• Lowest energy solutions with $\Psi(x) = 0$ at x = 0, L

X

Electrons in 3 dimensions

- Schrodinger Eq. In 3d with V = 0

 -(ĥ²/2m) [d²/dx² + d²/dy² + d²/dz²] Ψ (x,y,z) = E Ψ (x,y,z)
- Solution

Electrons in 3 dimensions

• Just as for phonons it is convenient to define Ψ with periodic boundary conditions

15

Density of States 3 dimensions

- Key point exactly the same as for vibration waves the values of k_x k_y k_z are equally spaced $\Delta k_x = 2\pi/L$, etc.
- Thus the volume in k space per state is (2π/L)³ and the number of states N per unit volume V = L³, with |k| < k₀ is

 $N = (4\pi/3) k_0^3 / (2\pi/L)^3 \implies N/V = (1/6\pi^2) k_0^3$

- \Rightarrow density of states per unit energy per unit volume is D(E) = d(N/V)/dE = (d(N/V)/dk) (dk/dE)Using $E = (\hbar^2/2m) k^2$, $dE/dk = (\hbar^2/m) k$ $\Rightarrow D(E) = (1/2\pi^2) k^2 / (\hbar^2/m) k = (1/2\pi^2) k / (\hbar^2/m)$ $= (1/2\pi^2) E^{1/2} (2m / \hbar^2)^{3/2}$
- (NOTE Kittel gives formulas that already contain a factor of 2 for spin) Physics 460 F 2006 Lect 12

16

Density of States 3 dimensions

• $D(E) = (1/2\pi^2) E^{1/2} (2m / h^2)^{3/2} \sim E^{1/2}$

What is special about electrons? Fermions - obey exclusion principle

- Fermions have spin s = 1/2 two electrons (spin up and spin down) can occupy each state
- Kinetic energy = ($p^{2}/2m$) = ($\hbar^{2}/2m$) k²
- Thus if we know the number of electrons per unit volume N_{elec}/V, the lowest energy allowed state is for the lowest N_{elec}/2 states to be filled with 2 electrons each, and all the (infinite) number of other states to be empty.
- Thus all states are filled up to the Fermi momentum k_F and Fermi energy $E_F = (\hbar^2/2m) k_F^2$ given by $N_{elec}/2V = (1/6\pi^2) k_F^3$ or $N_{elec}/V = (1/3\pi^2) k_F^3$

 $\Rightarrow k_{\rm F} = (3\pi^2 \, N_{\rm elec}/V)^{1/3} \text{ and } E_{\rm F} = (h^2/2m) (3\pi^2 \, N_{\rm elec}/V)^{2/3}$ Physics 460 F 2006 Lect 12

18

Fermi Distribution

- At finite temperature, electrons are not all in the lowest energy states
- Applying the fundamental law of statistics to this case (occcupation of any state and spin only can be 0 or 1) leads to the Fermi Distribution (Kittel appendix)

Typical values for electrons?

- Here we count only valence electrons (see Kittel table)
- Element $N_{elec}/atom$ E_F $T_F = E_F/k_B$ Li 1 4.7 eV 5.5 x10⁴ K Na 1 3.23eV 3.75 x10⁴ K Al 3 11.6 eV 13.5 x10⁴ K
- Conclusion: For typical metals the Fermi energy (or the Fermi temperature) is much greater than ordinary temperatures

Heat Capacity for Electrons Just as for phonons the definition of heat capacity is

- Just as for phonons the definition of heat capacity is C = dU/dT where U = total internal energy
- For T << T_F = E_F /k_B it is easy to see that roughly $U \sim U_0 + N_{elec} (T/T_F) k_B T$ so that

• Quantitative evaluation: $U = \int_0^\infty dE E D(E) f(E) - \int_0^{E_F} dE E D(E)$

- Using the fact that T << T_F: $C = dU/dT = \int_0^{\infty} dE (E - E_F) D(E) (df(E)/dT)$ $\approx D(E_F) \int_0^{\infty} dE (E - E_F) (df(E)/dT)$
- Finally, using transformations discussed in Kittel, the integral can be done almost exactly for T << T_F
 → C = (π²/3) D(E_F) k_B² T (valid for any metal)
 → (π²/2) (N_{elec}/E_F) k_B² T (for the electron gas)
 D(E_F) = 3 N_{elec}/2E_F for gas
- Key result: C ~ T agrees with experiment!

Heat capacity

Comparison of electrons in a metal with phonons

Heat capacity

- Experimental results for metals $C/T = \gamma + A T^2 +$
- It is most informative to find the ratio γ / γ (free) where γ (free) = ($\pi^2/2$) (N_{elec}/E_F) k_B^2 is the free electron gas result. Equivalently since $E_F \propto 1/m$, we can consider the ratio γ / γ (free) = m(free)/m_{th}*, where m_{th}* is an thermal effective mass for electrons in the metal

Metal	m _{th} */ m(free)
Li	2.18
Na	1.26
Κ	1.25
AI	1.48
Cu	1.38

• m_{th}* close to m(free) is the "good", "simple metals" ! Physics 460 F 2006 Lect 12

24

Outline

- Overview role of electrons in solids
 Determine binding of the solid
 "Electronic" properties (conductivity, ...)
- The starting point for understanding electrons in solids is completely different from that for understanding the nuclei (But we will be able to use many of the same concepts!)
- Simplest model Electron Gas
 Failure of classical mechanics
 Success of quantum mechanics
 Pauli Exclusion Principle, Fermi Statistics
 Energy levels in 1 and 3 dimensions
- Similarities, differences from vibration waves
- Density of States, Heat Capacity
- (Read Kittel Ch 6)

Next time

- Continue free electron gas (Fermi gas)
- Electrical Conductivity
- Hall Effect
- Thermal Conductivity
- (Read Kittel Ch 6)
- Remember: EXAM Wednesday, October 11

Comments on Exam

- Wed. October 11
- Closed Book You will be given constants, etc.
- Three types of problems:
- Short answer questions
- Order of Magnitudes
- Essay questions
- Quantitative problems not difficult