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Part II - Electronic Properties of Solids
Lecture 12:  The Electron Gas

(Kittel Ch. 6)
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Outline
• Overview - role of electrons in solids

• The starting point for understanding electrons in 
solids is completely different from that for 
understanding the nuclei  ( But we will be able to 
use many of the same concepts! ) 

• Simplest model - Electron Gas 
Failure of classical mechanics
Success of quantum mechanics
Pauli Exclusion Principle,  Fermi Statistics
Energy levels in 1 and 3 dimensions 

• Similarities, differences from vibration waves 
• Density of States, Heat Capacity
• (Read Kittel Ch 6)
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Role of Electrons in Solids
• Electrons are responsible for binding of crystals --

they are the “glue” that hold the nuclei together
Types of binding (see next slide)

Van der Waals - electronic polarizability
Ionic  - electron transfer
Covalent - electron bonds
Metallic - more about this soon

• Electrons are responsible for important properties:
Electrical conductivity in metals
(But why are some solids insulators?)
Magnetism
Optical properties
. . . .
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Characteristic types of binding 

Closed-Shell Binding
Van der Waals

Metallic BindingCovalent Binding

Ionic Binding
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Starting Point for Understanding 
Electrons in Solids

• Nature of a metal:
Electrons can become 
“free of the nuclei” and 
move between nuclei
since we observe 
electrical conductivity

• Electron Gas
Simplest possible model
for a metal - electrons are
completely “free of the 
nuclei” - nuclei are replaced
by a smooth background --
“Electrons in a box”
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Electron Gas - History

• Electron Gas model predates quantum mechanics

• Electrons Discovered in 1897 
- J. J. Thomson

• Drude-Lorentz Model -
Electrons - classical particles
free to move in a box
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Drude-Lorentz Model (1900-1905)

• Electrons as classical particles moving in a box

• Model: All electrons 
contribute to conductivty.  
Works!  Still used!

• But same model predicted 
that all electrons contribute 
to heat capacity.  Disaster.  
Heat capacity is MUCH less 
than predicted.

Paul Drude



Physics 460 F 2006  Lect 12 8

Quantum Mechanics
• 1911:  Bohr Model for H 
• 1923: Wave Nature of Particles Proposed 

Prince Louie de Broglie
• 1924-26: Development of Quantum 

Mechanics - Schrodinger equation
• 1924: Bose-Einstein Statistics for 

Identical Particles (phonons, ...)
• 1925-26: Pauli Exclusion Principle,

Fermi-Dirac Statistics (electrons, ...)
• 1925: Spin of the Electron (spin = 1/2)

G. E. Uhlenbeck and S. Goudsmit
Schrodinger
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Schrodinger Equation 
• Basic equation of Quantum Mechanics

[ - ( h/2m )   2 + V( r )   ] Ψ ( r ) =  E Ψ ( r ) 

where
m = mass of particle
V( r ) = potential energy at point  r

2 = (d2/dx2 + d2/dy2 + d2/dz2)
E = eigenvalue = energy of quantum state
Ψ ( r ) = wavefunction
n ( r )  = | Ψ ( r ) |2 = probability density 

∆

∆

∆
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Schrodinger Equation - 1d line 
• Suppose particles can move freely on a line with 

position x,  0 < x < L

• Schrodinger Eq. In 1d with V = 0
- ( h2/2m ) d2/dx2 Ψ (x) =  E Ψ (x) 

• Solution  with Ψ (x) = 0 at x = 0,L 
Ψ (x) = 21/2 L-1/2 sin(kx) ,  k = m π/L, m = 1,2, ...
(Note similarity to vibration waves)
Factor chosen so ∫0

L dx | Ψ (x) |2 = 1

• E (k) = ( h2/2m ) k 2

0 L

Boundary Condition
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Electrons on a line 
• Solution with Ψ (x) = 0 at x = 0,L

Examples of waves - same picture as for lattice 
vibrations except that here Ψ (x) is a continuous wave
instead of representing atom displacements 

0 L

Ψ
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Electrons on a line
• For electrons in a box, the energy is just the kinetic 

energy which is quantized because the waves must fit 
into the box

E (k) = ( h2/2m ) k 2 , k = m π/L, m = 1,2, ...

E

k

Approaches 
continuum 

as L becomes large
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Schrodinger Equation - 1d line 
• E (k) = ( h2/2m ) k 2 , k = m π/L, m = 1,2, ...

• Lowest energy solutions with Ψ (x) = 0 at x = 0,L

Ψ (x)

x
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Electrons in 3 dimensions
• Schrodinger Eq. In 3d with V = 0

-(h2/2m ) [d2/dx2 + d2/dy2 + d2/dz2 ] Ψ (x,y,z) = E Ψ
(x,y,z) 

• Solution
Ψ = 23/2 L-3/2 sin(kxx) sin(kyy) sin(kzz) ,  
kx = m π/L, m = 1,2, …, same for y,z

E (k) = ( h2/2m ) (kx
2 + ky

2 + kz
2 ) = ( h2/2m ) k2

E

k

Approaches 
continuum 

as L becomes large
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Electrons in 3 dimensions
• Just as for phonons it is convenient to define Ψ with 

periodic boundary conditions
• Ψ is a traveling plane wave:

Ψ = L-3/2 exp( i(kxx + kyy + kzz) ,  
kx =  ± m (2π/L), etc., m = 0,1,2,..

E (k) = ( h2/2m ) (kx
2 + ky

2 + kz
2 ) = ( h2/2m ) k2

E

k

Approaches 
continuum 

as L becomes large
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Density of States 3 dimensions
• Key point - exactly the same as for vibration waves -

the values of kx ky kz are equally spaced - ∆kx = 2π/L , 
etc.

• Thus the volume in k space per state is (2π/L)3

and the number of states N per unit volume V = L3, 
with |k| < k0 is
N = (4π/3) k0

3 / (2π/L)3 ⇒ N/V = (1/6π2) k0
3

• ⇒ density of states per unit energy per unit volume is 
D(E) = d(N/V)/dE = (d(N/V)/dk) (dk/dE) 
Using E = ( h2/2m ) k2 , dE/dk = ( h2/m ) k
⇒ D(E) = (1/2π2) k2 / (h2/m ) k = (1/2π2) k / (h2/m ) 

= (1/2π2) E1/2 (2m / h2)3/2

• (NOTE - Kittel gives formulas that already contain a 
factor of 2 for spin)
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Density of States 3 dimensions
• D(E) = (1/2π2) E1/2 (2m / h2)3/2 ~ E1/2

E

D(E) EF

Filled
Empty
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What is special about electrons?
• Fermions - obey exclusion principle
• Fermions have spin s = 1/2 - two electrons (spin up 

and spin down) can occupy each state
• Kinetic energy = ( p2/2m ) = ( h2/2m ) k2

• Thus if we know the number of electrons per unit 
volume Nelec/V, the lowest energy allowed state is for 
the lowest Nelec/2 states to be filled with 2 electrons 
each, and all the (infinite) number of other states to be 
empty.

• Thus all states are filled up to the Fermi momentum kF
and Fermi energy EF = ( h2/2m ) kF

2 given by
Nelec/2V = (1/6π2) kF

3 or Nelec/V = (1/3π2) kF
3

⇒
kF = (3π2 Nelec/V )1/3 and EF = (h2/2m) (3π2 Nelec/V )2/3
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Fermi Distribution 
• At finite temperature, electrons are not all in the lowest 

energy states
• Applying the fundamental law of statistics to this case 

(occcupation of any state and spin only can be 0 or 1) 
leads to the Fermi Distribution (Kittel appendix)

f(E) = 1/[exp((E-µ)/kBT) + 1]

E

D(E)

µ
f(E)

1

1/2

Chemical potential 
for electrons = 

Fermi energy at T=0

kBT
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Typical values for electrons?
• Here we count only valence electrons (see Kittel table)

• Element   Nelec/atom      EF         TF = EF/kB

Li 1  4.7 eV 5.5 x104 K 

Na 1 3.23eV 3.75 x104 K 

Al 3   11.6 eV 13.5 x104 K

• Conclusion: For typical metals the Fermi energy (or 
the Fermi temperature) is much greater than ordinary 
temperatures
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Heat Capacity for Electrons 
• Just as for phonons the definition of heat capacity is

C = dU/dT where U = total internal energy
• For T << TF = EF /kB it is easy to see that roughly

U ~ U0 + Nelec (T/ TF) kB T  so that

C =  dU/dT ~ Nelec kB (T/ TF)

E

D(E)

µ
f(E)

1

1/2

Chemical potential 
for electrons
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Heat Capacity for Electrons 
• Quantitative evaluation: 

U = ∫0
∞ dE E D(E) f(E) - ∫0

EF dE E D(E) 

• Using the fact that T << TF:
C =  dU/dT = ∫0

∞ dE (E - EF)  D(E) (df(E)/dT) 
≈ D(EF) ∫0

∞ dE (E - EF) (df(E)/dT) 

• Finally, using transformations discussed in Kittel, the 
integral can be done almost exactly for T << TF

→ C = (π2/3) D(EF) kB
2 T (valid for any metal) 

→ (π2/2) (Nelec/EF) kB
2 T  (for the electron gas)

• Key result:  C ~ T - agrees with experiment!
D(EF) = 3 Nelec/2EF for gas
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Heat capacity
• Comparison of electrons in a metal with phonons

H
ea

t C
ap

ac
ity

 C

T

T3

Phonons approach
classical limit
C ~ 3 Natom kB

Electrons have 
C ~ Nelec kB (T/TF)

Electrons dominate
at low T in a metal 

T

Phonons dominate
at high T because of 
reduction factor (T/TF)
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Heat capacity
• Experimental results for metals

C/T = γ + A T2 + ….
• It  is most informative to find the ratio γ / γ(free)

where γ(free) = (π2/2) (Nelec/EF) kB
2 is the free electron 

gas result.  Equivalently since EF ∝1/m, we can 
consider the ratio γ / γ(free) = m(free)/mth*, where mth*
is an thermal effective mass for electrons in the metal 

Metal mth*/ m(free)
Li 2.18
Na 1.26
K 1.25
Al 1.48
Cu 1.38

• mth* close to m(free) is the “good”, “simple metals” !
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Outline
• Overview - role of electrons in solids

Determine binding of the solid
“Electronic” properties (conductivity, … )

• The starting point for understanding electrons in 
solids is completely different from that for 
understanding the nuclei  ( But we will be able to 
use many of the same concepts! ) 

• Simplest model - Electron Gas 
Failure of classical mechanics
Success of quantum mechanics
Pauli Exclusion Principle,  Fermi Statistics
Energy levels in 1 and 3 dimensions 

• Similarities, differences from vibration waves 
• Density of States, Heat Capacity
• (Read Kittel Ch 6)
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Next time
• Continue free electron gas  (Fermi gas)

• Electrical Conductivity

• Hall Effect

• Thermal Conductivity

• (Read Kittel Ch 6)

• Remember:  EXAM   Wednesday, October 11
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Comments on Exam
• Wed.  October 11

• Closed Book
You will be given constants, etc.

• Three types of problems:

• Short answer questions
• Order of Magnitudes
• Essay questions
• Quantitative problems – not difficult
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