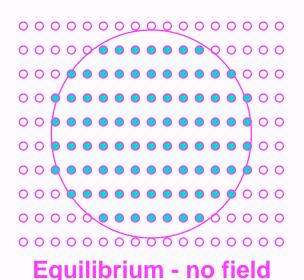
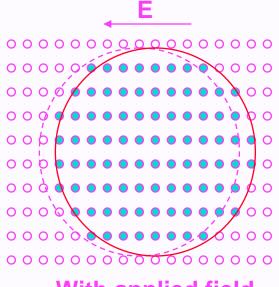
Part II - Electronic Properties of Solids Lecture 13: The Electron Gas Continued (Kittel Ch. 6)





With applied field

Outline

From last time:

Success of quantum mechanics Pauli Exclusion Principle, Fermi Statistics Energy levels in 1 and 3 dimensions

Density of States, Heat Capacity

• Today:

Fermi surface Transport

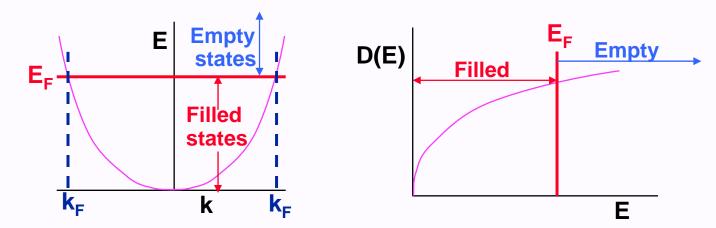
Electrical conductivity and Ohm's law Impurity, phonon scattering

Hall Effect Thermal conductivity Metallic Binding

(Read Kittel Ch 6)

Electron Gas in 3 dimensions

- Recall from last lecture:
- Energy vs k E (k) = (($\hbar^2/2m$) ($k_x^2 + k_y^2 + k_z^2$) =($\hbar^2/2m$) k^2
- Density of states $D(E) = (1/2\pi^2) E^{1/2} (\hbar^2/2m)^{-3/2} \sim E^{1/2}$



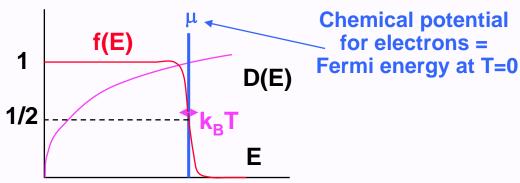
•Electrons obey exclusion Principle:

The lowest energy possible is for all states filled up to the Fermi momentum k_F and Fermi energy $E_F = (\hbar^2/2m)k_F^2$ given by $k_F = (3\pi^2 \, N_{elec}/V \,)^{1/3}$ and $E_F = (\hbar^2/2m) \, (3\pi^2 \, N_{elec}/V \,)^{2/3}$

Fermi Distribution

- At finite temperature, electrons are not all in the lowest energy states. Thermal energy causes states to be partially occupied.
- Fermi Distribution (Kittel appendix)

$$f(E) = 1/[exp((E-\mu)/k_BT) + 1]$$



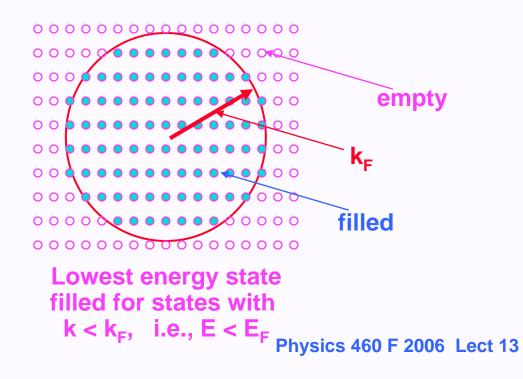
• For typical metals the Fermi energy is much greater than ordinary temperatures. Example:

For AI,
$$E_F = 11.6 \text{ eV}$$
, i.e., $T_F = E_F/k_B = 13.5 \times 10^4 \text{ K}$

- At ordinary temperature, the only change in the occupation of the states is very near the chemical potential μ . States are filled for states with E << μ , and empty for states with E >> μ .
- Heat capacity $C = \frac{dU}{dT} \sim N_{elec} k_B (T/T_F)$ Physics 460 F 2006 Lect 13

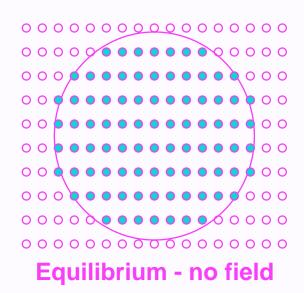
Electrical Conductivity & Ohm's Law

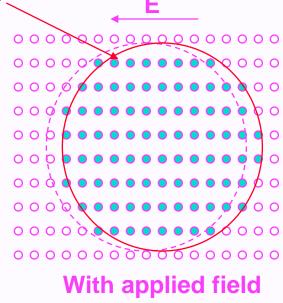
- The filling of the states is described by the Fermi surface – the surface in k-space that separates filled from empty states
- For the electron gas this is a sphere of radius k_F.



Electrical Conductivity & Ohm's Law

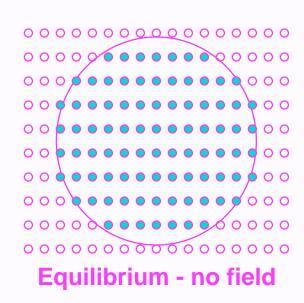
- Consider electrons in an external field E. They experience a force F = -eE
- Now F = dp/dt = h dk/dt, since p = h k
- Thus in the presence of an electric field all the electrons accelerate and the k points shift, i.e., the entire Fermi surface shifts

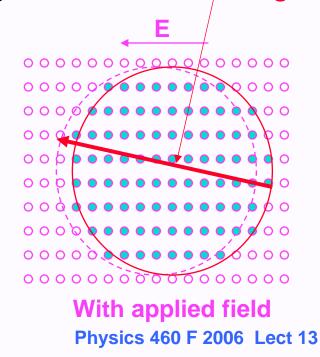




Electrical Conductivity & Ohm's Law

- What limits the acceleration of the electrons?
- Scattering increases as the electrons deviate more from equilibrium
- After field is applied a new equilbrium results as a balance of acceleration by field and scattering





Electrical Conductivity and Resitivity

- The conductivity σ is defined by $j = \sigma E$, where j = current density
- How to find σ ?
- From before F = dp/dt = m dv/dt = h dk/dt
- Equilibrium is established when the rate that k increases due to E equals the rate of decrease due to scattering, then dk/dt = 0
- If we define a scattering time τ and scattering rate $1/\tau$ h (dk/dt + k/ τ) = F= q E (q = charge)
- Now j = n q v (where n = density) so that $j = n q (h k/m) = (n q^2/m) \tau E$ $\Rightarrow \sigma = (n q^2/m) \tau$ Note: sign of charge does not matter
- Resistance: $\rho = 1/\sigma \propto m/(n q^2 \tau)$

Scattering mechanisms

Impurities - wrong atoms, missing atoms, extra atoms,

Proportional to concentration

Lattice vibrations - atoms out of their ideal places

Proportional to mean square displacement

This also applies to a crystal (not just the electron gas)
using the fact that there is no scattering in a perfect
crystal as discussed in the next lectures

Electrical Resitivity

 Resistivity ρ is due to scattering: Scattering rate inversely proportional to scattering time τ

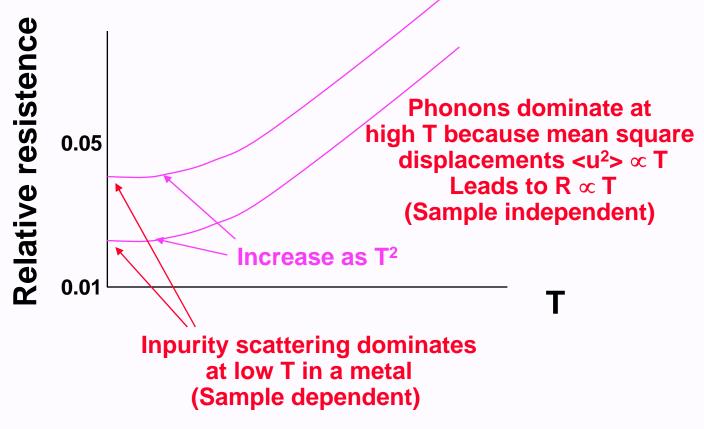
 $\rho \propto \text{scattering rate} \propto 1/\tau$

Matthiesson's rule - scattering rates add

$$\rho = \rho_{vibration} + \rho_{impurity} \propto 1/\tau_{vibration} + 1/\tau_{impurity}$$
 Temperature dependent
$$\sim < u^2 >$$
 Temperature independent - sample dependent

Electrical Resitivity

- Consider relative resistance R(T)/R(T=300K)
- Typical behavior (here for potassium)

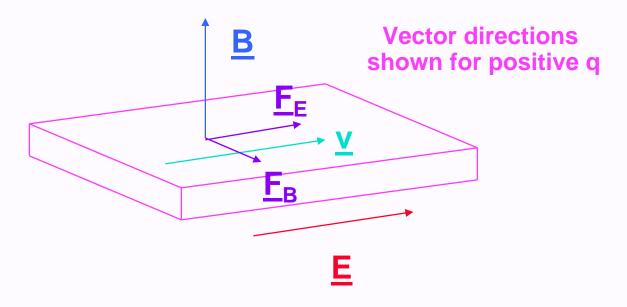


Interpretation of Ohm's law Electrons act like a gas

- A electron is a particle like a molecule.
- Electrons come to equilibrium by scattering like molecules (electron scattering is due to defects, phonons, and electron-electron scattering).
- Electrical conductivity occurs because the electrons are charged, and it shows the electrons move and equilibrate
- What is different from usual molecules?
 Electrons obey the exclusion principle. This limits the allowed scattering which means that electrons act like a weakly interacting gas.

Hall Effect I

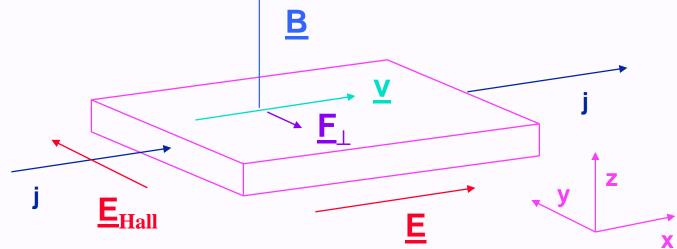
- Electrons moving in an electric and a perpendicular magnetic field
- Now we must carefully specify the vector force
 F = q(E + (1/c) v x B) (note: c → 1 for SI units)
 (q = -e for electrons)



Hall Effect II

- Relevant situation: current j = σ E = nqv flowing along a long sample due to the field <u>E</u>
- But NO current flowing in the perpendicular direction
- This means there must be a Hall field $\underline{\mathbf{E}}_{Hall}$ in the perpendicular direction so the net force $\underline{\mathbf{F}}_{\perp} = 0$

$$\underline{\mathbf{F}}_{\perp} = \mathbf{q}(\underline{\mathbf{E}}_{Hall} + (1/c) \underline{\mathbf{v}} \times \underline{\mathbf{B}}) = 0$$



Hall Effect III

Since

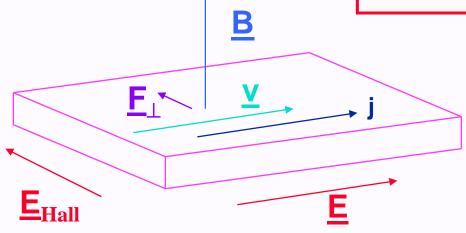
$$\mathbf{F}_{\parallel} = q(\mathbf{E}_{Hall} + (1/c) \mathbf{v} \times \mathbf{B}) = 0$$
 and $\mathbf{v} = \mathbf{j}/\mathbf{n}q$

then defining
$$V = (\underline{V})_x$$
, $E_{Hall} = (\underline{E}_{Hall})_y$, $B = (\underline{B})_z$, $E_{Hall} = -(1/c)(j/nq)(-B)$ Sign from cross product

and the Hall coefficient is

$$R_{Hall} = E_{Hall} / j B = 1/(nqc)$$
 or

 $R_{Hall} = 1/(nq)$ in SI



Hall Effect IV

Finally, define the Hall resistance as

$$\rho_{Hall} = R_{Hall} B = E_{Hall} / j$$

Each of these quantities can be measured directly

which has the same units as ordinary resistivity

• $R_{Hall} = E_{Hall} / j B = 1/(nq)$

E_{Hall}

B

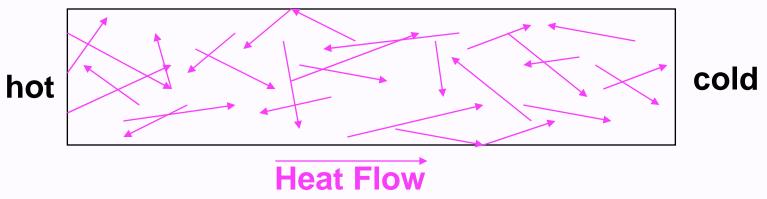
E_{Hall}

Note: R_{Hall} determines sign of charge q

Since magnitude of charge is known R_{Hall} determines density n

Heat Transport due to Electrons

- A electron is a particle that carries energy just like a molecule.
- Electrical conductivity shows the electrons move, scatter, and equilibrate
- What is different from usual molecules?
 Electrons obey the exclusion principle. This limits scattering and helps them act like weakly interacting gas.



Heat Transport due to Electrons

- Definition (just as for phonons):
 j_{thermal} = heat flow (energy per unit area per unit time)
 = K dT/dx
- If an electron moves from a region with local temperature T to one with local temperature T - ΔT, it supplies excess energy c ΔT, where c = heat capacity per electron. (Note ΔT can be positive or negative).
- On the average for a thermal:
 ΔT = (dT/dx) v_x τ, where τ = mean time between collisions
- Then $j = -n v_x c v_x \tau dT/dx = -n c v_x^2 \tau dT/dx$ Density

 Flux

Just as for phonons:

Averaging over directions gives (v_x^2) average = (1/3) v^2 and

$$j = - (1/3) n c v^2 \tau dT/dx$$

 Finally we can define the mean free path L = v τ and C = nc = total heat capacity, Then

$$j = - (1/3) C v L dT/dx$$

and

 $K = (1/3) C v L = (1/3) C v^2 \tau = thermal conductivity$

(just like an ordinary gas!)

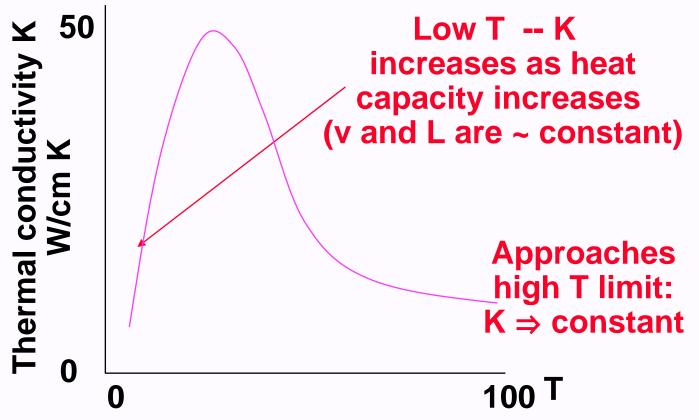
- What is the appropriate v?
- The velocity at the Fermi surface = v_F
- What is the appropriate τ?
- Same as for conductivity (almost).
- Results using our previous expressions for C:

$$K = (\pi^2/3) (n/m) \tau k_B^2 T$$

• Relation of K and σ -- From our expressions: $K / \sigma = (\pi^2/3) (k_B/e)^2 T$

• This justifies the Weidemann-Franz Law that $K/\sigma \propto T$

- K ∝ σ T
- Recall $\sigma \to \text{constant}$ as T $\to 0$, $\sigma \to 1/T$ as T $\to \text{large}$



Comparison to Phonons

Electrons dominate in good metal crystals

Comparable in poor metals like alloys

Phonons dominate in non-metals

Metallic Binding

- (Treated only in problems in Kittel)
- Electron gas kinetic energy is positive, i.e., replusive.
 See homework for E, pressure, bulk modulus
 Key point: E_{kinetic} ∝ (1/V)^{2/3}
- What is the attraction that holds metals together?
 Coulomb attraction for the nuclei
 NOT included in gas so far must be added
- Energy of point nuclei in uniform electron gas: Key point: $E_{Coulomb} \propto (1/V)^{1/3}$ Approximate expressions in Kittel problem 8 Energy per electron: $E_{Coulomb} \propto -1.80/r_s$ Ryd, where $(4\pi/3)r_s^3 = V$
- Net effect is metallic binding

Where can the electron gas be found?

- In semiconductors!
 More later in doped semiconductors, the extra electrons (or missing electrons) can act like an electron gas in a background
- Where can 1d or 2d gas be found?
 In semiconductor structures!

Layers of GaAs and AIAS can make nearly Ideal 2d gasses

1d "wires" can also be made

More later

Summary

Electrical Conductivity - Ohm's Law

$$\sigma = (n q^2/m) \tau$$
 $\rho = 1/\sigma$

Hall Effect

$$\rho_{Hall} = R_{Hall} B = E_{Hall} / j$$

 ρ and ρ_{Hall} determine n and the charge of the carriers

Thermal Conductivity

K =
$$(\pi^2/3)$$
 (n/m) τ k_B² T
Weidemann-Franz Law:
K / σ = $(\pi^2/3)$ (k_B/e)² T

Metallic Binding
 Kinetic repulsion
 Coulomb attraction to nuclei
 (not included in gas model - must be added)

Next time

- EXAM Wednesday, October 11
- Next week: Electrons in crystals
 - Energy Bands
 - We will use many ideas from the understanding of crystals and lattice vibrations to describe electron waves in a periodic crystal!
 - (Read Kittel Ch 7)

Comments on Exam

- Three types of problems:
- Short answer questions
- Order of Magnitudes
- Essay question
- Quantitative problems