

Outline

- **More on concentrations of electrons and holes in SemiconductorsControl of conductivity by doping (impurities)**
- **Mobility and conductivity**
- **Thermoelectric effects**
- **Carriers in a magnetic field Cyclotron resonance Hall effect(Read Kittel Ch 8)**

Law of Mass Action (from last time)

• Product ${\sf n}$ ${\sf p}$ = 4 (k $_{\sf B}$ T/ 2 π^2) 3 (m $_{\sf c}$ m $_{\sf v}$) $^{3/2}$ exp(-(E $_{\sf c}$ - E $_{\sf v}$)/k $_{\sf B}$ T) is independent of the Fermi energy

- Even though n and p vary by huge amounts, the product np is constant!
- W h y ?

There is an equilibrium between electrons and holes! Like a chemical reaction, the reaction rate for an electron to fill a hole is proportional to the product of their densities. If one creates more electrons by some process, they will tend to fill more of the holes leaving fewer holes, etc.

Control of carriers by "doping"

- Impure crystals may have added electrons or holes that change the balance from an intrinsic ideal crystal.
- If an impurity atom adds an electron, it is called a "donor"
- If an impurity atom subtracts an electron, it is called a "acceptor" (it adds a hole)
- The Fermi energy changes (n and p change)
- But (Law of mass action) the product ${\sf n}$ p = 4 (k $_{\sf B}$ T/ 2 π^2) 3 (m $_{\sf c}$ m $_{\sf v}$) $^{3/2}$ exp(-(E $_{\sf c}$ - E $_{\sf v}$)/k $_{\sf B}$ T) does not change!
- Even though n and p vary by huge amounts, the product np is constant!

What does it mean to say an impurity atom adds or subtracts an electron?

- Consider replacing an atom with one the that has one more electron (and one more proton), e.g., P in Si, As in Ge, Zn replacing As in GaAs, ….
- •Question:

Is that electron bound to the impurity site? Or is it free to move and count as an electroncharge carrier?

- The probability that it escapes depends on the crystal and the impurity --- But if it escapes from the impurity, then it acts as an added electron independent of the nature of the impurity
- Similar argument for holes

Substitution Impurities in Diamond or Zinc-blende crystals

Impurity substituting for host atom, e.g., Donors: P in SiSe on As site in GaAs

> Acceptors: B in Si Zn on Ga site in GaAs

Zinc-blende structure crystal (e.g., GaAs) Diamond (e.g., Si) if pink and grey atoms are the same

Binding of electron to impurity

- Simplest approximation accurate in many cases qualitatively correct in others (Kittel p 210)
- Electron around impurity is exactly like a hydrogen atom -- except that the electron has effective mass m* and the Coulomb interaction is reduced by the dielectric constant ε

 $\textsf{m}\to\textsf{m}^*;\;\; \textsf{e}^2\to\;\textsf{e}$ 2 $/\varepsilon$

• The binding is (see back inside cover of Kittel) $E_{\text{binding}} = (e^4 \text{ m}^*/ 2 \text{ }e^2 \text{ h}^2)$ = (1/ ε²)(m*/m) 13.6 eV **h**

• The radius is: a_{binding} = (ε ħ ² / m*e²) = ε (m/m*) a_{Bohr}
= ε (m/m*) .053 nm **h**

Physics 460 F 2006 Lect 18 7

Binding of electron to impurity

- Typical values in semiconductors m* ~ 0.01 - 1 m; ^ε~ 5 - 20
- Thus binding energies are $\mathsf{E}_{\mathsf{binding}}$ ~ 0.0005 - 0.5 eV ~ 5 K - 5,000 K
- Sizes a ~ 2.5 50 nm

- In many cases the binding can be very weak and the size much greater than atomic sizes
- Holes are similar (but often m* is larger)

Thermal ionization of donors and acceptors

- Suppose we have donors with binding energy much less than the band gap (the usual case).
- •The fraction of ionized donors can be worked out simply if the density of donor atoms N_d is much greater than the density of acceptors and intrinsic density of holes and electrons (otherwise it is messy)
- $\bullet\,$ Then the density of ionized donors $\bf N_{\rm d}$ density n of electrons that escape, which can be found + equals the by the same approach as the density of electrons and holes for an intrinsic crystal.

Thermal ionization of donors and acceptors

 $\bullet~$ Assuming $\rm k_B~T << E_{binding}$ the result is (Kittel p 213)

 ${\sf n} = 2({\sf m}_{\sf c}\, {\sf k}_{\sf B} \, {\sf T}/\,2\,\pi^2)$ $^{3/2}\, {\sf N}_{\sf d}$ $^{1/2}$ exp(- $\mathsf{E}_{\mathsf{binding}}/\mathsf{k}_{\mathsf{B}}$ T)

When is a doped semiconductor a metal?

- If the density of donors (or acceptors) is large then each impurity is not isolated **+a**
- The picture of an isolated hydrogen-like bound statedoes not apply
- What happens if the states overlap?

- The system becomes "metallic" !
- Similar to Na metal in the sense that the electrons are delocalized and conduct electricity even at T=0
- This is a metal if the distance between the impurity atoms is comparable to or less than the radius a
- There are also special cases see later

Conductivity with electrons and holes

- Both electrons and holes contribute to conductivity
- Current density j = density x charge x velocity J = n q_e v_e + p q_h v_h = - n e v_e + p e v_h
- Note: $e = |$ charge of electron | > 0

Thermopower and Peltier Effect

- Both electrons and holes contribute to conductivity **and conduct heat**
- **The Peltier effect** is the generation of a heat current J u due to an electric current J ^q **in the absence of a thermal gradient**
- Electrons and holes tend to cancel can give either sign - one way to determine whether electrons or holes dominate the transport!

Thermopower and Peltier Effect

- •Quantitative definition: **Peltier coefficient is the ratio of energy to charge transported for each carrier Surprising?**
- The energy for an electron is E_c μ + (3/2) K_BT; and for a hole is μ - E_v + (3/2) K_BT
- $\Pi_{\rm e}$ = (E_c μ + (3/2) K_BT) / q_e = (E_c μ + (3/2) K_BT) /e Π_h = (μ - Ε_ν + (3/2) K_BT) / q_h = + (μ - Ε_ν + (3/2) K_BT) /e

How a solid state refrigerator works

- **The Peltier effect** is the generation of a heat current J u due to an electric current J ^q **in the absence of a thermal gradient**
- Why semiconductors? Because Π is so large due to the large value of the energy per carrier (E_c - μ + (3/2) K_BT) or (μ - E_v + (3/2) K_BT)

Thermopower and Peltier Effect

- •Recall: Both electrons and holes contribute to conductivity and conduct heat
- **The thermoelectric effect** is the generation of an electrical voltage by a heat current J u **in the absence of an electric current.**
- Just as in Peltier effect, electrons and holes tend to cancel - can give either sign

- If there is a thermal gradient but no electrical current, there must be an electric field to prevent the current
- The logic is very similar to the Hall effect and leads to the expression for the electric field needed to prevent electrical current

• This leads to thermopower: generation of power from heat flow (by allowing the current to flow through a curcuit)

Mobility

- Characterizes the quality of a semiconductor for electron and hole conduction separately
- Recall: Current density j = density x charge x velocity J = n q_e v_e + p q_h v_h = - n e v_e + p e v_h
- Define **mobility** μ = speed per unit field = v/E $\mathsf{J} =$ $=$ (n μ_e + p μ_h) e E

Note: the symbols µ **e and** µ **h denote mobility (Do not confuse with the chemical potential** µ **)**

Experiments: How do we know holes are positive? How do we know that electrons act like they have effective masses?

- **Experiments in magnetic fields**
	- **Hall Effect**
	- **Cyclotron resonance**

Hall Effect I

• From our analysis before Adding a perpendicular magnetic field causes the electrons and holes to be pushed the same direction with force -- but since their charges are opposite, the current in the y direction tends to cancel

Hall Effect II

- In order to have no current in the y direction, we must have electric field in the y direction, i.e., j _y = (n μ_e + p μ_h) e E_y + (- n μ_e |v_e|+ p μ_h |v_h|) e B_z = 0
- \bullet Thus $\mathsf{E}_\mathsf{y} = \mathsf{B}_\mathsf{z}$ (- n μ_e |v $_\mathsf{e}$ |+ p μ_h |v $_\mathsf{h}$ |) / (n μ_e + p μ_h)

Cyclotron resonance

• **Measures effective mass directly**

- **Subtle points**
- **THIS IS EXTRA MATERIAL –NOT REQUIRED FOR HOMEWORK OR THE EXAM**

Motion of carrier in Magnetic field

- Force: q (\underline{v} x \underline{B}) = 1h d<u>k</u> /dt
- Electron moves on constant energy surface, with only change in direction of **k**
- Thus dk /dt = e | <u>**v** x **B**| /fɪ = (e/m*) k B</u>
- Isotropic bands (same in all directions like for free electrons): period of revolution in k space is 2πk/(dk/dt) = 2π/ ω_c and ω_c = qB/m*

Cyclotron Resonance

- Experimental way to measure effective masses
- •Magnetic field **B** defines particular direct in space
- Electron rotate in plane perpendicular to **B** with a period of revolution $\omega_{\rm c}$ = qB/m*
- Observed experimentally by the absorption of electromagnetic waves at frequency $\,\omega_{\rm c}^{}$
- Interpretation: wave causes electron bunches to move incircle - resonance occurs whenelectrons are wave are in phase at frequency $\omega_{\rm c}$

What if minimum is not at $k = 0$ **?**

- Multiple equivalent minima
- Anisotropic mass

Multiple minima

• Conduction band of Si - 6 minima along $(k_x, 0, 0)$, (0,k_y,0), (0, 0, k_z) directions

• In Ge, 8 minima along directions with $|{\sf k}_{{}_{\sf X}}|=|{\sf k}_{{}_{\sf Y}}|=|{\sf k}_{{}_{\sf Z}}|$

Anisotropic Mass

- Consider only one minimum at $\underline{\mathbf{k}}$ = (k_{min} ,0,0)
- Anisotropic mass: d $^2\overline{\sf E}$ d 2 E d 2 E ≠ ⁼

Constant energy surfaces

- Around each of the the minima, the surfaces of constant energy in k space are circles or ellipses
- E x a m ple o f Si

Cyclotron Resonance

- Dependence upon direction of magnetic field **B** shows the anisotropy of the mass
- Example: In Si all along **B** any cubic axis is the same. In each direction there are two resonance frequencies ω_c = qB/m* corresponding two different masses

for motion perpendicular to **B**

Large orbit,

large mass Small orbit, small mass k_{x}

k y

B

 k_z

Summary for Today

- **Control of conductivity by doping (impurities) Donors and acceptors Hydrogenic equations for binding Important that binding be weak for carrier to escape and be able to move**
- **Conductivity and Mobility**
- **Thermoelectric effectsPeltierEffectThermopower Sign of carrier important**
- **Carriers in a magnetic field Hall effectCyclotron resonance (extra – not required) (Read Kittel Ch 8)**

Summary of Semiconductors I

- **Typical bands - understanding from nearly free electron picture**
- **Optical properties - (direct vs indirect gap)**
- Motion of wave packets $\underline{\mathbf{F}} = \hat{\mathbf{n}} \; \; \underline{\mathsf{d}\mathbf{k}} / \mathrm{d}\mathsf{t}$
- **Group velocity**
- **Effective mass m*:**

$$
\frac{1}{m^*} = \frac{1}{h^2} \frac{d^2E}{d^2k}
$$

- **^m* tends to be small if the gap is small**
- **Negative electrons; positive holes**
- **Law of mass action: np ⁼"constant"**
- **Physics 460 F 2006 Lect 18 33** • **Doping and concentrations of electrons, holes Donors, acceptors Binding of carrier to impurity site**

Summary of Semiconductors II

- **Thermoelectric effects: Peltier; Thermopower Sign of carrier important**
- **Carriers in a magnetic field Hall effectCyclotron resonance (extra – not required) Sign of carrier important**
- **(Read Kittel Ch 8)**
- **LATER: Inhomgeneous Semiconductors - e.g., variations in dopin in space, p-n junctions, ….**

Next time

- **Semiconductor devices**
- **Created by inhomogeneous material or doping Variation in concentrations of electrons andholes by controlled doping profiles**
- **p-n junctions - rectification- forward - reverse bias**
- **Metal-semiconductor junctions Schottky barriers - rectification**
- **Solar Cells**
- **Light emitting diodes**
- **Bipolar transistor n-p-n p - n-p**
- **(Kittel Ch. 17, p. 503 - 512 + extra class notes)**