

1

Outline

- More on concentrations of electrons and holes in Semiconductors Control of conductivity by doping (impurities)
- Mobility and conductivity
- Thermoelectric effects
- Carriers in a magnetic field Cyclotron resonance Hall effect (Read Kittel Ch 8)

Law of Mass Action (from last time)

• Product **n** p = 4 (k_B T/ 2 π^2) ³ (m_c m_v) ^{3/2} exp(-(E_c - E_v)/k_B T) is independent of the Fermi energy

- Even though n and p vary by huge amounts, the product np is constant!
- Why?

There is an equilibrium between electrons and holes! Like a chemical reaction, the reaction rate for an electron to fill a hole is proportional to the product of their densities. If one creates more electrons by some process, they will tend to fill more of the holes leaving fewer holes, etc.

3

Control of carriers by "doping"

- Impure crystals may have added electrons or holes that change the balance from an intrinsic ideal crystal.
- If an impurity atom adds an electron, it is called a "donor"
- If an impurity atom subtracts an electron, it is called a "acceptor" (it adds a hole)
- The Fermi energy changes (n and p change)
- But (Law of mass action) the product **n** p = 4 (k_B T/ 2 π^2) ³ (m_c m_v) ^{3/2} exp(-(E_c - E_v)/k_B T) does not change!
- Even though n and p vary by huge amounts, the product np is constant!

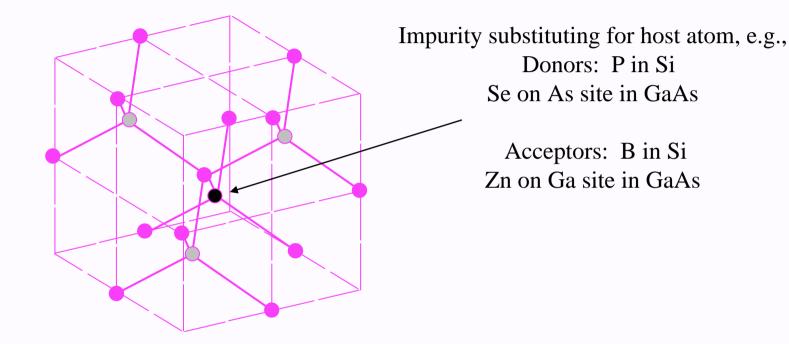
What does it mean to say an impurity atom adds or subtracts an electron?

- Consider replacing an atom with one the that has one more electron (and one more proton), e.g., P in Si, As in Ge, Zn replacing As in GaAs,
- Question:

Is that electron bound to the impurity site? Or is it free to move and count as an electron charge carrier?

- The probability that it escapes depends on the crystal and the impurity --- But if it escapes from the impurity, then it acts as an added electron independent of the nature of the impurity
- Similar argument for holes

Substitution Impurities in Diamond or Zinc-blende crystals



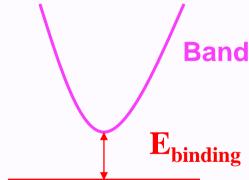
Zinc-blende structure crystal (e.g., GaAs) Diamond (e.g., Si) if pink and grey atoms are the same

Binding of electron to impurity

- Simplest approximation accurate in many cases qualitatively correct in others (Kittel p 210)
- Electron around impurity is exactly like a hydrogen atom -- except that the electron has effective mass m* and the Coulomb interaction is reduced by the dielectric constant ε

 $m \rightarrow m^*; e^2 \rightarrow e^2/\epsilon$

 The binding is (see back inside cover of Kittel)
 E_{binding} = (e⁴ m*/ 2 ε² h²)
 = (1/ε²)(m*/m) 13.6 eV

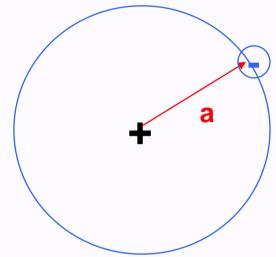


• The radius is: $a_{binding} = (\epsilon \hbar^2 / m^* e^2) = \epsilon (m/m^*) a_{Bohr}$ $= \epsilon (m/m^*) .053 nm$ Physics 460 F 20

Physics 460 F 2006 Lect 18

Binding of electron to impurity

- Typical values in semiconductors m* ~ 0.01 - 1 m; ε ~ 5 - 20
- Thus binding energies are E_{binding} ~ 0.0005 - 0.5 eV ~ 5 K - 5,000 K
- Sizes a ~ 2.5 50 nm



- In many cases the binding can be very weak and the size much greater than atomic sizes
- Holes are similar (but often m* is larger)

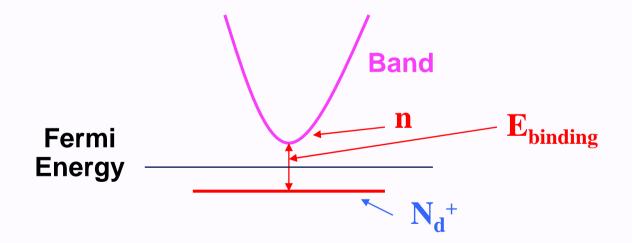
Thermal ionization of donors and acceptors

- donors and acceptors
 Suppose we have donors with binding energy much less than the band gap (the usual case).
- The fraction of ionized donors can be worked out simply if the density of donor atoms N_d is much greater than the density of acceptors and intrinsic density of holes and electrons (otherwise it is messy)
- Then the density of ionized donors N_d⁺ equals the density n of electrons that escape, which can be found by the same approach as the density of electrons and holes for an intrinsic crystal.

Thermal ionization of donors and acceptors

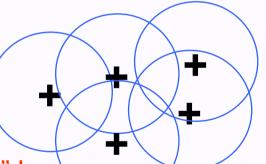
• Assuming $k_B T \ll E_{binding}$ the result is (Kittel p 213)

 $n = 2(m_c k_B T/2 \pi^2)^{3/2} N_d^{1/2} exp(-E_{binding}/k_B T)$



When is a doped semiconductor a metal?

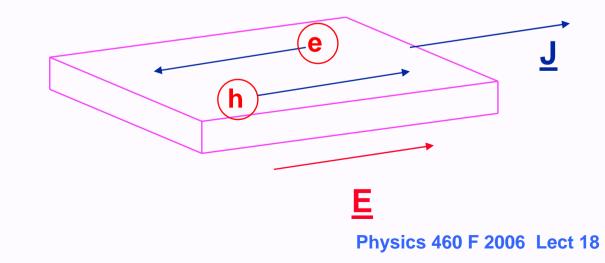
- If the density of donors (or acceptors) is large then each impurity is not isolated
- The picture of an isolated hydrogen-like bound statedoes not apply
- What happens if the states overlap?



- The system becomes "metallic" !
- Similar to Na metal in the sense that the electrons are delocalized and conduct electricity even at T=0
- This is a metal if the distance between the impurity atoms is comparable to or less than the radius a
- There are also special cases see later

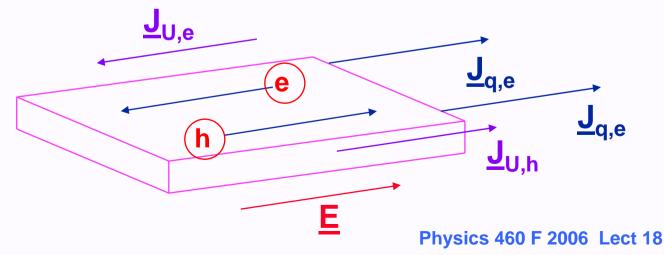
Conductivity with electrons and holes

- Both electrons and holes contribute to conductivity
- Current density j = density x charge x velocity J = n q_e v_e + p q_h v_h = - n e v_e + p e v_h
- Note: e = |charge of electron| >0



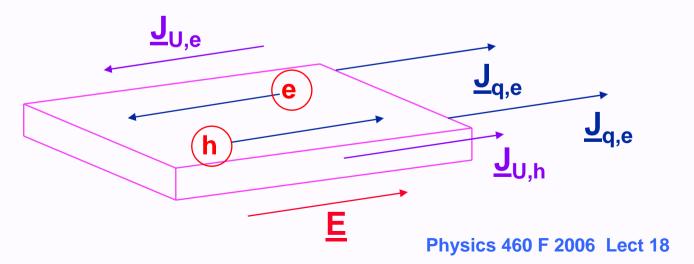
Thermopower and Peltier Effect

- Both electrons and holes contribute to conductivity and conduct heat
- The Peltier effect is the generation of a heat current J_u due to an electric current J_q in the absence of a thermal gradient
- Electrons and holes tend to cancel can give either sign one way to determine whether electrons or holes dominate the transport!



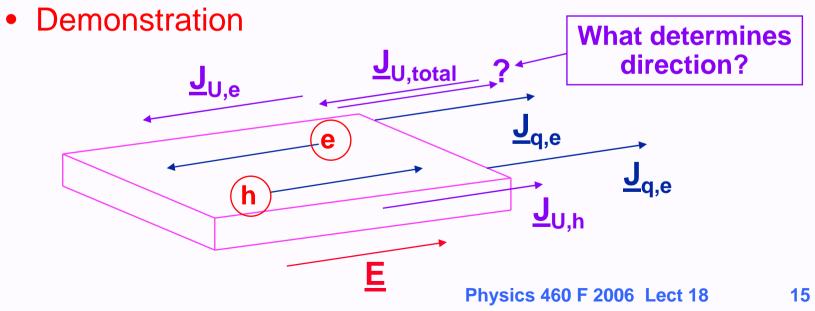
Thermopower and Peltier Effect

- Quantitative definition: Peltier coefficient is the ratio of energy to charge transported for each carrier Surprising?
- The energy for an electron is $E_c \mu + (3/2) K_BT$; and for a hole is $\mu - E_v + (3/2) K_BT$
- $\Pi_{e} = (E_{c} \mu + (3/2) K_{B}T) / q_{e} = -(E_{c} \mu + (3/2) K_{B}T) / e$ $\Pi_{h} = (\mu - E_{v} + (3/2) K_{B}T) / q_{h} = +(\mu - E_{v} + (3/2) K_{B}T) / e$



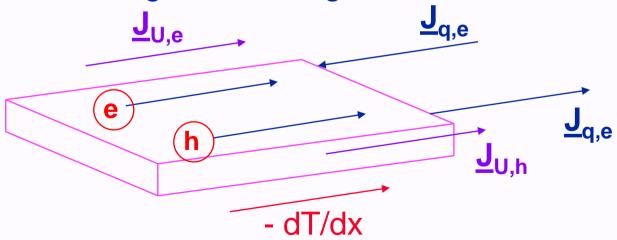
How a solid state refrigerator works

- The Peltier effect is the generation of a heat current J_u due to an electric current J_q in the absence of a thermal gradient
- Why semiconductors? Because Π is so large due to the large value of the energy per carrier (E_c μ + (3/2) K_BT) or (μ E_v + (3/2) K_BT)

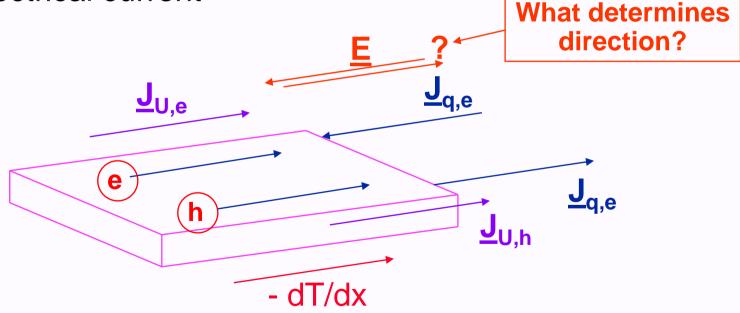


Thermopower and Peltier Effect

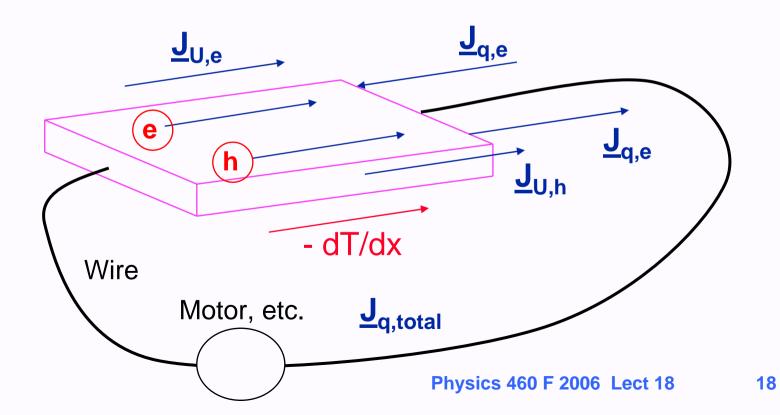
- Recall: Both electrons and holes contribute to conductivity and conduct heat
- The thermoelectric effect is the generation of an electrical voltage by a heat current J_u in the absence of an electric current.
- Just as in Peltier effect, electrons and holes tend to cancel - can give either sign



- If there is a thermal gradient but no electrical current, there must be an electric field to prevent the current
- The logic is very similar to the Hall effect and leads to the expression for the electric field needed to prevent electrical current

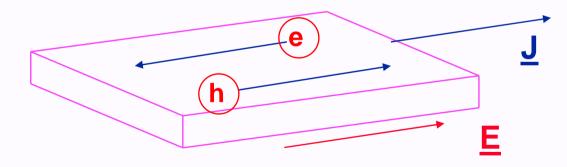


 This leads to thermopower: generation of power from heat flow (by allowing the current to flow through a curcuit)



Mobility

- Characterizes the quality of a semiconductor for electron and hole conduction separately
- Recall: Current density j = density x charge x velocity J = n q_e v_e + p q_h v_h = - n e v_e + p e v_h
- Define **mobility** μ = speed per unit field = v/E J = = (n μ_e + p μ_h) e E



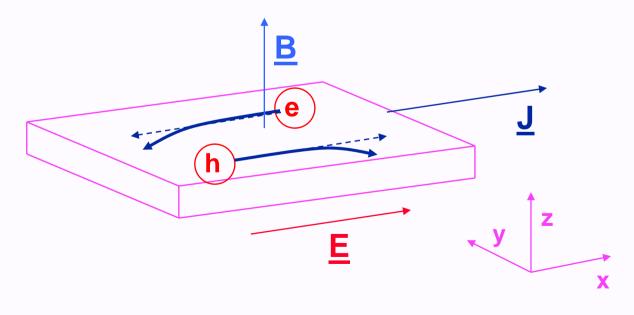
Note: the symbols μ_e and μ_h denote mobility (Do not confuse with the chemical potential μ)

Experiments: How do we know holes are positive? How do we know that electrons act like they have effective masses?

- Experiments in magnetic fields
 - Hall Effect
 - Cyclotron resonance

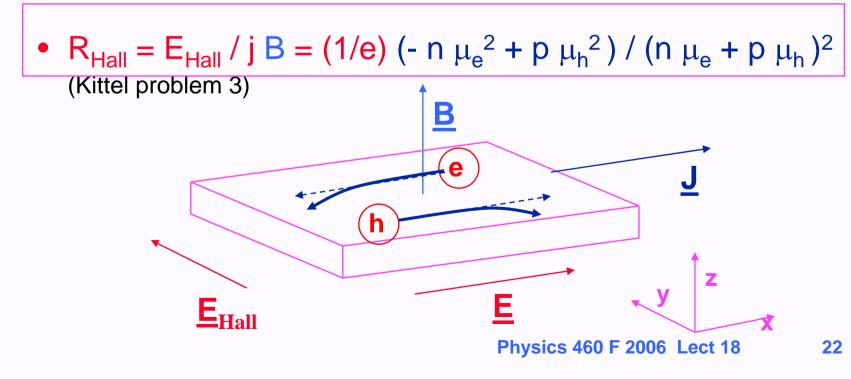
Hall Effect I

 From our analysis before Adding a perpendicular magnetic field causes the electrons and holes to be pushed the same direction with force -- but since their charges are opposite, the current in the y direction tends to cancel



Hall Effect II

- In order to have no current in the y direction, we must have electric field in the y direction, i.e.,
 j_v = (n μ_e + p μ_h) e E_v + (- n μ_e |v_e| + p μ_h |v_h|) e B_z = 0
- Thus $E_y = B_z (-n \mu_e |v_e| + p \mu_h |v_h|) / (n \mu_e + p \mu_h)$



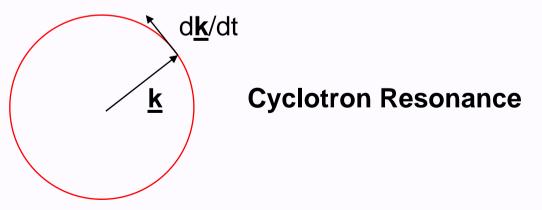
Cyclotron resonance

• Measures effective mass directly

- Subtle points
- THIS IS EXTRA MATERIAL NOT REQUIRED FOR HOMEWORK OR THE EXAM

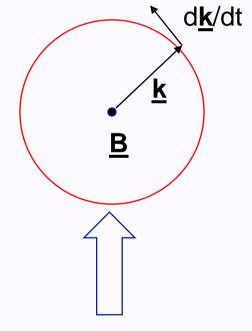
Motion of carrier in Magnetic field

- Force: $q(\underline{v} \times \underline{B}) = \hbar d\underline{k}/dt$
- Electron moves on constant energy surface, with only change in direction of <u>k</u>
- Thus dk /dt = e $|\underline{\mathbf{v}} \times \underline{\mathbf{B}}| / \hbar$ = (e/m*) k B
- Isotropic bands (same in all directions like for free electrons): period of revolution in k space is $2\pi k/(dk/dt) = 2\pi/\omega_c$ and $\omega_c = qB/m^*$

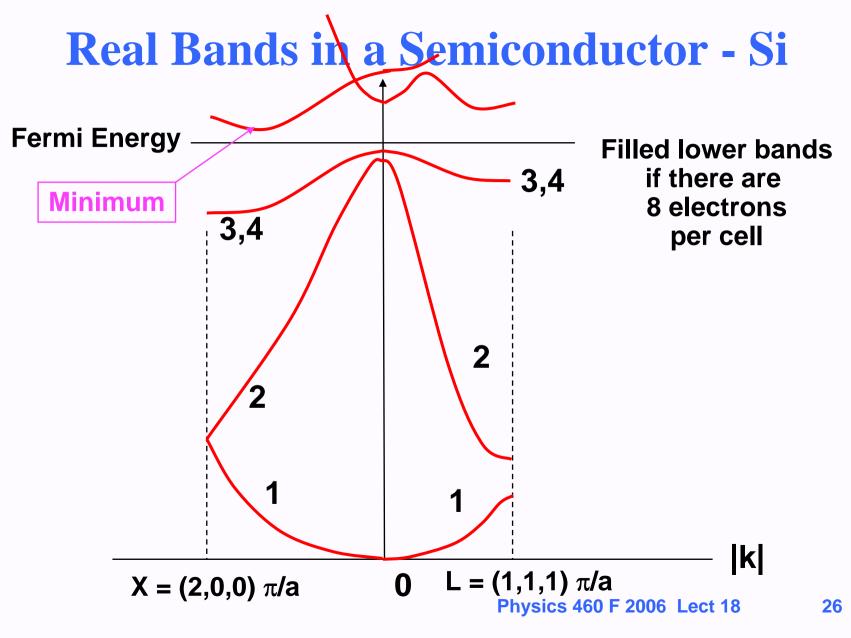


Cyclotron Resonance

- Experimental way to measure effective masses
- Magnetic field <u>B</u> defines particular direct in space
- Electron rotate in plane perpendicular to <u>**B**</u> with a period of revolution $\omega_c = qB/m^*$
- Observed experimentally by the absorption of electromagnetic waves at frequency ω_c
- Interpretation: wave causes electron bunches to move in circle resonance occurs when electrons are wave are in phase at frequency ω_c

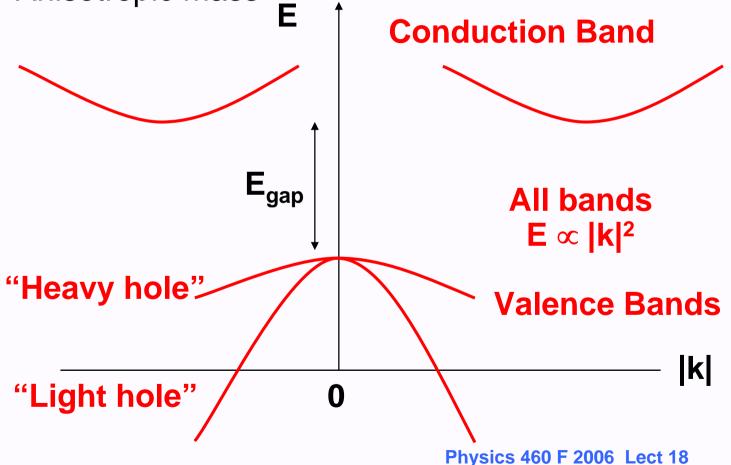


E&M Wave



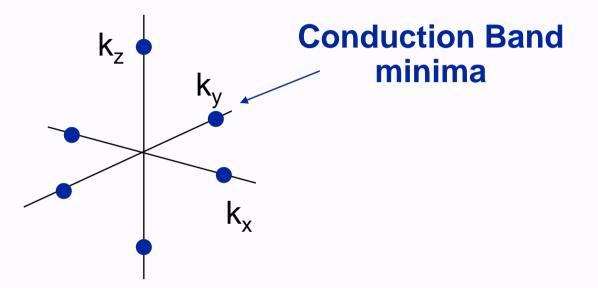
What if minimum is not at k = 0?

- Multiple equivalent minima
- Anisotropic mass



Multiple minima

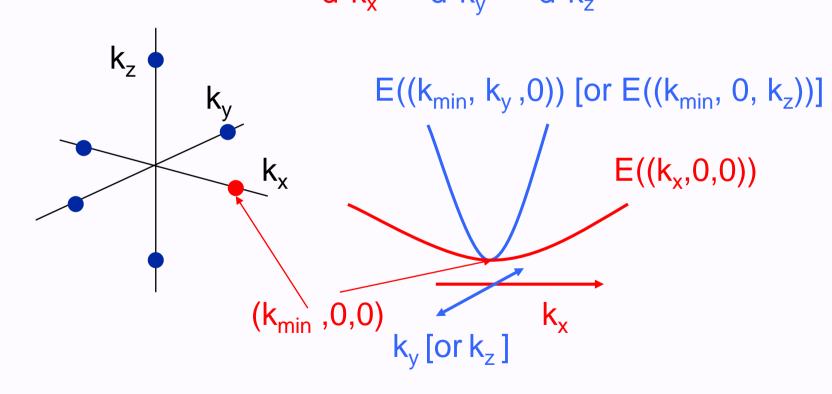
Conduction band of Si - 6 minima along (k_x,0,0), (0,k_y,0), (0, 0, k_z) directions



• In Ge, 8 minima along directions with $|k_x| = |k_y| = k_z|$

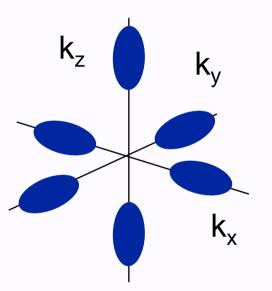
Anisotropic Mass

- Consider only one minimum at <u>k</u> = (k_{min},0,0)
- Anisotropic mass: $\frac{d^2E}{d^2k_x} \neq \frac{d^2E}{d^2k_y} = \frac{d^2E}{d^2k_z}$



Constant energy surfaces

- Around each of the the minima, the surfaces of constant energy in k space are circles or ellipses
- Example of Si



Cyclotron Resonance

- Dependence upon direction of magnetic field <u>B</u> shows the anisotropy of the mass
- Example: In Si all along <u>B</u> any cubic axis is the same. In each direction there are two resonance frequencies $\omega_c = qB/m^*$ corresponding two different masses

for motion perpendicular to **B**

Large orbit, large mass Small orbit, small mass <u>B</u>

K,

Summary for Today

- Control of conductivity by doping (impurities)
 Donors and acceptors
 Hydrogenic equations for binding
 Important that binding be weak for carrier to escape and be able to move
- Conductivity and Mobility
- Thermoelectric effects Peltier Effect Thermopower Sign of carrier important
- Carriers in a magnetic field Hall effect Cyclotron resonance (extra – not required) (Read Kittel Ch 8)

Summary of Semiconductors I

- Typical bands understanding from nearly free electron picture
- Optical properties (direct vs indirect gap)
- Motion of wave packets $\underline{F} = \frac{h}{dk} \frac{dk}{dt}$
- Group velocity
- Effective mass m*:

$$\frac{1}{\mathbf{m}^*} = \frac{1}{\mathbf{h}^2} \frac{\mathrm{d}^2 \mathbf{E}}{\mathrm{d}^2 \mathbf{k}}$$

- m* tends to be small if the gap is small
- Negative electrons; positive holes
- Law of mass action: np = "constant"
- Doping and concentrations of electrons, holes Donors, acceptors Binding of carrier to impurity site Physics 460 F 2006 Lect 18

Summary of Semiconductors II

- Thermoelectric effects: Peltier; Thermopower Sign of carrier important
- Carriers in a magnetic field Hall effect Cyclotron resonance (extra – not required) Sign of carrier important
- (Read Kittel Ch 8)
- LATER: Inhomgeneous Semiconductors e.g., variations in dopin in space, p-n junctions,

Next time

- Semiconductor devices
- Created by inhomogeneous material or doping Variation in concentrations of electrons and holes by controlled doping profiles
- p-n junctions rectification- forward reverse bias
- Metal-semiconductor junctions
 Schottky barriers rectification
- Solar Cells
- Light emitting diodes
- Bipolar transistor n-p-n p-n-p
- (Kittel Ch. 17, p. 503 512 + extra class notes)