Lecture 21: Nanostructures Kittel Ch 18 + extra material in the class notes

Outline

- Electron in a box (again)
- Examples of nanostructures
- Created by Applied Voltages
 Patterned metal gates on semiconductors
 Create "dots" that confine electrons
- Created by material structures
 Clusters of atoms, e.g., Si₂₉H₃₆, CdSe clusters
 Clusters of atoms embedded in an insulator
 e,g., Si clusters in SiO₂

 Buckyballs, nanotubes,
- How does one study nanosystems?
- What are novel properties?
- See Kittel Ch 18 and added material in the lecture notes

Probes to determine stuctures

- Transmission electron microscope (TEM)
- Scanning electron microscope (SEM)
- Scannng tunneling microscope (STM) more later
 Figures in Kittel Ch 18

How small – How large?

- "Nano" means size ~ nm
- Is this the relevant scale for "nano effects" ?
 - Important changes in chemistry, mechanical properties
 - Electronic and optical properties
 - Magnetism (later)
 - Superconductivity (later)
- Changes in chemistry, mechanical properties
 - Expect large changes if a large fraction of the atoms are on the surface
- Electronic and optical properties
 - Changes due to the importance of surface atoms
 - Quantum "size effects" can be very large and significant \

"Surface" vs "Bulk" in Nanosystems

- Consider atomic "clusters" with ~ 1 nm
- Between molecules (well-defined numbers and types of atoms – well-defined structures) and condensed matter ("bulk" properties are characteristic of the "bulk" independent of the size – surface effects separate)
- Expect large changes if a large fraction of the atoms are on the surface
- Typical atomic size ~ 0.3 nm
- Consider a sphere volume 4πR³/3, surface area 4πR² --- Rough estimates
 - R = 3 nm $\Rightarrow~$ ~ 10³ atoms 10² on the surface 10%
 - R = 1.2 nm \Rightarrow ~ 64 atoms 16 on the surface 25%
 - R = 0.9 nm \Rightarrow ~ 27 atoms 9 on the surface 33%

Physics 460 F 2006 Lect 24

Quantum Size Effects

- We can make estimates using the "electron in a box" model of the previous lecture
- The key quantity that determines the quantum effects is the mass
- When can we use m = m_{electron} ?
 In typical materials (metals like Na, Cu, ...
 the intrinsic electrons in semiconductors,...
- When do we use the effective mass m* For the added electrons or holes in a semiconductor

Quantization for electrons in a box in one dimension • $E_n = (\hbar^2/2m) k_z^2, k_z = n \pi/L, n = 1,2, ...$ $= (\hbar^2/4mL^2) n^2, n = 1,2, ...$

• Lowest energy solutions with $\Psi_n(x) = 0$ at x = 0, L

Electron in a box

 If the electrons are confined in a cubic box of size L in all three dimensions then the total energy for the electrons:

Nanoscale clusters

- Estimate the quantum size effects using the electron in a box model
- The discrete energies for electrons are given by E = (h²/4m L²) (n_x² + n_y² + n_z²)
- The typical energy scale is h²/(4m L²) = 3.7 eV/ L² where L is in nm

Nanoscale clusters - II

• Example: Silicon clusters

- Must have other atoms to "passivate" the "dangling bonds" at the surface – is ideal
- Si₂₉H₃₆ bulk-like cluster with 18 surface atoms, each with 2 H attached
- Si₂₉H₂₄ 5 bulk-like atoms at the center and 24 rebonded surface atoms, each / with one H attached – shown in the figure
- Carbon "Buckyballs"
 - Sheet of graphite (graphene) rolled into a ball (C₆₀ forms a soccer ball with diameter ~ 1nm)
 - Graphene is a zero gap material, and the size effect causes C₆₀ to have a gap of ~ 2eV

Physics 460 F 2006 Lect 24

Special Presentation Prof. Munir Nayfeh

Physics 460 F 2006 Lect 24

Semiconductor Quantum Dots

- Structures with electrons (holes) confined in all three directions
- The discrete energies for electrons are given by E = (h²/2m L²) (n_x² + n_y² + n_z²)
- The energy scale factor is $\hbar^2/(2m L^2) = 3.7 eV(m_e/m^* L^2)$ where L is in nm
- If m* = 0.01 m_e, then the confinement energy is
 ~ 1eV for L ~ 30nm
 ~ 0.04 eV for L ~ 150nm
 (note 300K ~ .025 eV)

Physics 460 F 2006 Lect 24

One dimensional nanowires

- The motion of the electrons is exactly like the "electron in a box" problems discussed in Kittel, ch. 6
- Except the electrons have an effective mass m*
- And in this case, the box has length L in two directions (the y and z directions) and large in the x direction (L_x very large)
- Key Point: For ALL "electron in a box" problems, the energy is given by

 $E(\underline{k}) = (\hbar^2/2m)(k_x^2 + k_y^2 + k_z^2)$

For this case $m = m^*$ and $k_y = (\pi/L) n_y$, $k_z = (\pi/L) n_z$

Physics 460 F 2006 Lect 24

Density of States in two-dimensions

- Density of states (DOS) for each band is constant
- Example electrons fill bands in order
- The density of states in a nanotube have this form – See Kittel, Ch 18

Quantized one-dimensional bands

- What does this mean? One can make onedimensional electron gas in a semiconductor!
- Example electrons fill bands in order

- Examples of nanostructures
- Created by Applied Voltages

Patterned metal gates on semiconductors Create "dots" that confine electrons

• Created by material structures

Clusters of atoms, e.g., Si₂₉H₃₆, CdSe clusters Clusters of atoms embedded in an insulator e,g., Si clusters in SiO₂ Buckyballs, nanotubes, . . .

- How does one study nanosystems?
- What are novel properties?
- See Kittel Ch 18 and added material in the lecture notes

Next time

• Metals – start superconductivity