Lecture 22: Metals (Review and Kittel Ch. 9) and Superconductivity I (Kittel Ch. 10)

Physics 460 F 2006 Lect 22

Outline

- Normal metals Recall properties (From lectures 12, 13; Kittel ch. 6)
- Superconductivity Experimental Facts
 ZERO resistance at nonzero temperature
 Exclusion of magnetic fields
 Heat Capacity shows there is a gap
 Isotope effect
- (Kittel Ch 10)

What is special about electrons?

- Fermions obey exclusion principle
- Fermions have spin s = 1/2 two electrons (spin up and spin down) can occupy each state
- Electron Gas
- Kinetic energy = $(p^2/2m) = (h^2/2m) k^2$
- Fermi Surface is the surface in reciprocal space that is the boundary between the filled and empty states

Recall - Electron Gas Density of States 3 dimensions

• $D(E) = (1/2\pi^2) E^{1/2} (2m / \hbar^2)^{3/2} \sim E^{1/2}$

Physics 460 F 2006 Lect 22

Fermi Distribution

- At finite temperature, electrons are not all in the lowest energy states
- Applying the fundamental law of statistics to this case (occcupation of any state and spin only can be 0 or 1) leads to the Fermi Distribution (Kittel appendix)

Typical values for electrons

• Here we count only valence electrons (see Kittel table)

•	Element	N _{elec} /atom	E _F	$T_F = E_F/k_B$
	Li	1	4.7 eV	5.5 x10 ⁴ K
	Na	1	3.23eV	3.75 x10 ⁴ K
	AI	3	11.6 eV	13.5 x10 ⁴ K

 Conclusion: For typical metals the Fermi energy (or the Fermi temperature) is much greater than ordinary temperatures

Heat Capacity for Electrons Just as for phonons the definition of heat capacity is

- Just as for phonons the definition of heat capacity is
 C = dU/dT where U = total internal energy
- For T << T_F = E_F /k_B it is easy to see that roughly U ~ U0 + N_{elec} (T/T_F) k_B T so that C = $dU/dT \sim N_{elec} k_B (T/T_F)$

Heat capacity

• Comparison of electrons in a metal with phonons

What about a real metal?

- In a crystal the energies are not $E = (h^2/2m) k^2$
- Instead the energy is E_n(k), where k is the wavevector in the Brillouin Zone, and n = 1,2,3,... labels the bands
- The energy E_n(k) is different for k in different directions
- The concepts still apply The states are filled for E_n(k) < E_{Fermi} The states are empty for E_n(k) > E_{Fermi}
- This defines the Fermi surface: the surface in kspace where E_n(k) < E_{Fermi} – the boundary between filled and empty states

The Fermi surface in copper

Physics 460 F 2006 Lect 22

Heat capacity

- Experimental results for metals $C/T = \gamma + A T^2 +$
- It is most informative to find the ratio γ / γ (free) where γ (free) = ($\pi^2/2$) (N_{elec}/E_F) k_B^2 is the free electron gas result. Equivalently since $E_F \propto 1/m$, we can consider the ratio γ / γ (free) = m(free)/m_{th}*, where m_{th}* is an thermal effective mass for electrons in the metal Metal $m_{th}*/m$ (free)

Ü 2.18 ́
1.26
1.25
1.48
1.38

• m_{th}* close to m(free) is the "good", "simple metals" ! Physics 460 F 2006 Lect 22

Electrical Conductivity & Ohm's Law

- Consider electrons in an external field E. They experience a force F = -eE
- Now $F = dp/dt = \hbar dk/dt$, since $p = \hbar k$
- Thus in the presence of an electric field all the electrons accelerate and the k points shift, i.e., the entire Fermi surface shifts

Electrical Conductivity & Ohm's Law

- What limits the acceleration of the electrons?
- Scattering increases as the electrons deviate more from equilibrium
- After field is applied a new equilibrium results as a balance between acceleration by field and scattering

Electrical Conductivity and Resistivity

- The conductivity σ is defined by $j = \sigma E$, where j = current density
- How to find σ ?
- From before F = dp/dt = m dv/dt = h dk/dt
- Equilibrium is established when the rate that k increases due to E equals the rate of decrease due to scattering, then dk/dt = 0
- If we define a scattering time τ and scattering rate1/ τ h (dk/dt + k / τ) = F= q E (q = charge)
- Now j = n q v (where n = density) so that j = n q (h k/m) = (n q²/m) τ E $\Rightarrow \sigma = (n q^{2}/m) \tau$
- Resistance: $\rho = 1/\sigma \propto m/(n q^2 \tau)$ Physics 460 F 2006 Lect 22

Scattering mechanisms

Impurities - wrong atoms, missing atoms, extra atoms,

Proportional to concentration

• Lattice vibrations - atoms out of their ideal places

Proportional to mean square displacement

• (Really these conclusions depend upon ideas from the next section that there is no scattering in a perfect crystal.)

Electrical Resistivity

Resistivity ρ is due to scattering: Scattering rate inversely proportional to scattering time τ

 $ho \propto$ scattering rate $\propto 1/\tau$

• Matthiesson's rule - scattering rates add

Physics 460 F 2006 Lect 22 16

Electrical Resitivity

- Consider relative resistance R(T)/R(T=300K)
- Typical behavior (here for potassium)

- Laboratory of Kamerling Onnes in Leiden Why there? Why then?
- Helium had just been liquified in Onnes' lab making possible experiments at temperatures around 4.2K and below

Superconducting elements

NOT the magnetic 3d transition and 4f rare earth elements - NOT the "best" metals - like Cu, Ag, Na

APPENDIX D: PERIODIC TABLE OF THE ELEMENTS

* Average value based on the relative abundance of isotopes on earth. For unstable elements, the mass of the most stable isotope is given in brackets.

Physics 460 F 2006 Lect 22

Superconducting transition

- Transition is VERY narrow $\Delta T < 10^{-4} \text{ K}$
- Reversible (unlike magnet)
- Transition Temperatures T_c
- AI 1.2 K Hg 4.6 K Pb 7.2 K

Au < 0.001 K - not found to be superconducting!

 Na_3C_{60} 40 K (1990)

 $YBa_2Cu_3O_7$ 93 K (1987)

Record today 140 K

Is Resistance Really ZERO??

- Currents have been flowing in rings in laboratories with no detectable loss for > 50 years !
- Theory says the current can continue for T > age of universe

Physics 460 F 2006 Lect 22 21

Effect of a Magnetic Field

• Magnetic fields tend to destroy superconductivity

Not just a perfect conductor!

- A superconductor is NOT just a perfect conductor
- A perfect conductor would do the following:

Meisner Effect (1934)

 A superconductor can actively push out a magnetic field - the Meisner effect

Physics 460 F 2006 Lect 22

Meisner Effect

- Magnetic field B is excluded for fields less than a "critical field" H_c where H is the external applied field
- The total internal field is $B = H + \mu_0 M$
- For "type I" superconductors B=0 for T < T_c

Type I vs Type II

- Magnetic field B is excluded only up to a critical field H_{c1}
- For type II superconductors, at higher fields there is penetration of the field coexisting with superconductivity up to $H = H_{c2}$

Type II

- For type II superconductors, at higher fields there is penetration of the field in lines of normal material coexisting with superconductivity in surrounding material up for $H_{c1} < H < H_{c2}$
- "Flux Lattice" of quantized units of flux (more later) Magnetic flux penetrates through the superconductor by creating small regions normal metal

Heat capacity (Specific Heat)

Comparison of electrons in a superconductor and a normal metal

 Shows there is an energy gap in the superconductor! (Specific heat is like an insulator!)

Physics 460 F 2006 Lect 22 28

Isotope Effect (1950)

- For materials made from the same elements but different isotopes - T_c changes !
- Experiment $T_c \sim 1/M^{1/2}$
- MUST be connected to MOTION of the nuclei

Summary

- Normal metal Recall properties
 No special magnetic properties for nonmagnetic metals, μ ≈ 1, B ≈ H

 Resistance vs T Heat capacity vs T
- Superconductivity Experimental Facts ZERO resistance at nonzero temperature NEW PHASE OF MATTER Meisner Effect (expulsion of magnetic fields) - shows a superconductor is not just a perfect conductor Heat Capacity - shows there is a phase transition - below T_c a gap, like an insulator! Isotope effect - something to do with MOTION of nuclei

Next time

- Superconductivity theory Basic ideas and phenomena Bardeen- Cooper-Schrieffer Theory - 1957 (Nobel Prize for work done in UIUC Physics)
- (Kittel parts of Ch 10)