The Ising Model

Today we study one of the most studied models in statistical
physics, the Ising Model (1925).

e Some applications:
- Magnetism (the original application)
— Liquid-gas transition
— Binary alloys (can be generalized to multiple components)

e Onsager found the exact answer for the 2D square lattice
(1944). (1D was done by Ising in 1925.)

e Used to develop renormalization group theory of phase
transitions in 1970’ s.

o We'll discuss critical slowing down of Metropolis and a
“cluster method”.

Figures from Landau and Binder (LB), MC Simulations in Statistical
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The Ising Model

e Consider a lattice with L2 sites and the
connectivity of. a square lattice.

e FEach lattice site has a single spin variable: s, = +1.
e With magnetic field h, the energy is:

H=-> JijSiSj —ihisl. and Z=YeP?

(i.J)

e] is the nearest neighbor (i,j) coupling:
-J > 0 models a ferromagnet.
-J < 0 models an antiferromagnet.

ePicture of spins at the critical temperature T..
Note the connected (percolated) clusters.
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Mapping a liquid-gas model to the
Ising Model

e For liquid-gas transition let n(r) be the density at lattice site
r which can have two values n(r)=(0,1).

E= zvl.jninj + ,uZni
(i.)) i

e First term models an interatomic repulsion.

e Second term is the chemical potential.

e Let’'s map this into the Ising model spin variables:

s=2n—1 or n:E(S+1)

H:Z S.S +(v_;u)2si+c

J=—v/4
h=—(v+ 1)/ 2
1 | 1
M = F . S, <n>=ﬁz’ni —(M+1)
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Phase Diagram (J>0)

e High-T phase: spins are random (uncorrelated).

e T > T, phase near T_: spins are random but correlated:
magnetic short-range (local) order.

e Low-T (T~0) phase: spins are aligned (fully correlated).

o A first-order transition (where there is a discontinuous
jump in M) occurs as H passes through zero for T<T,.

e Similar to liquid-gas phase diagram. Magnetic
field=pressure. M
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Critical point

e Concepts and understanding are universal.

They apply to all phase transitions of a similar type.
e Order parameter is the average magnetization: <s(r)>=m(r).
e Look at correlation function: y(r-r' )=<s(r)s(r’ )>-<s(r)><s(r’ )>.
e Magnetic susceptibility is: dm(r)/dh(r’ )|,so = Bx(r-r’)
e In ordered phase, spins are correlated over long distances.
e At the critical point, fluctuations at all length scales.

Low T

Fig. 4.1 Typical spin configurations for the two-dimensional Ising square lattice: (left) 7" < T.; (center) T ~ T; (right)
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Magnetization probability
e How does magnetization vary across transition?

e And with the system size?
e In ordered phase, broken symmetry and barrier to flipping.
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Figure 2. Probability distribution Py (s) of the magnetization s per spinof Lx L X L
subsystems of a simple cubic Ising lattice with N = 243 spins and periodic boundary
Te T conditions for zero magnetic field and temperature kgT/J = 4.0 (note that the
critical temperature occurs at about kgTc/J = 4.51[26].

Figure 3. Schematic variation of the probability distribution Pr(m) to

magnetization m in a finite system of linear dimension L from T > Te to !

(left part) and the associated temperature variation of the average order pai

< |m] >, “susceptibility” kgTx' = L¥< m? > — < |m]| >?) and reduced 6
order cumulant Uy, = 1— < m* >/ [3 < m? >2] (right part).



If we quench too fast we will end in a two phase region.
The larger the system the sharper the phase transition.
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Fig. 2.11 Schematic
phase coexistence
diagram showing the
‘spinodal’ line. Paths
(A) and (B) represent
quenches into the
nucleation regime and
the spinodal
decomposition regime,
respectively.

Magnetization Scaling depends on T:

M~ (T.-T)P
B=0.125 for D=2.
B=0.325 for D=3.

Atomic Scale Simulation

for T<T,

1.0 o

IM| vs. 1/BJ for varying L

°o O

el
-

/

0/

T
I\
N
N

o —
Jnn



Spinoidal decomposition
R e

»

Suppose only local spin flips.
e Model for phase separation such as a
binary “alloy” (or oil and vinegar).

e Dynamics depends on whether the
spin is conserved

— Spin flip (left)
— Spin exchange (right) conserves
particle number.
e Transition appears through a
coarsening of the separation.

e Becomes slower and slower as the
transition proceeds: Critical Slowing
down.

exchange
T=0.6T,
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Surfaces/Boundary Conditions

e By quenching quickly we may catch , ,
a “trapped” surface.

e Topological excitation.
e You can see steps, etc.

e (Can use twisted boundary conditions
to study a liquid-gas surface without

worrying about it disappearing.

e Just put -] along one plane (side):
i.e. antiferromagnetic interaction
along one plane.

H = —(%) Jl.jSlS]
J i#0
J = ’
/ —J i=0
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Critical slowing down

L o Monte Carlo of a zero-field Ising Lattice

* Near the transition U vs. time and M vs. time.

dynamics gets very slow eTE

if you use any local r

update method. uth
e The larger the system th /C
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Simple Metropolis algorithm

e Simplest Metropolis:

Lots of tricks to make it run faster.

Tabulate exp(-E/kT)

Do several flips each cycle by packing bits into a word
But critical slowing down near Tc.

At low T accepted flips are rare--can speed up by sampling
acceptance time.

At high T all flips are accepted--ergodic problem.

Metropolis importance sampling Monte Carlo scheme

(1) Choose an initial state

(2) Choose a site ¢

(3) Calculate the energy change AF which results if the spin at site ¢
is overturned

(4) Generate a random number r such that 0 <r» < 1

(5) If r < exp(—AE/kgT), flip the spin

(6) Go the next site and go to (3)
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JAVA Ising applet

Dynamically runs using the heat bath algorithm.
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Glauber and Kawasaki dynamics

e Heat bath or Glauber:
— Pick a spin and flip with probability i T 1

- Will have lower flipping rate butno 7 = =7~

high T problem. P
e N-fold way:

— Look at all the sites, choose the site
“i” according to:

— The normalization determines how T
time advances. 2]-”,-

— Discuss this later with kinetic MC

o Kawasaki dynamics
— Exchange spins and accept or reject
— Spin is constant as in spinoidal
decomposition.

e ALL THESE ARE LOCAL hence suffer
from slowdown.
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