Liquid helium
the prototypic quantum fluid
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e A helium atom is an elementary _
particle. A weakly interacting
hard sphere. First electronic :
excitation is 230,000 K.

e Interatomic potential is known O\
more accurately than any other P

: 3...441..5

atom because electronic .
eXCitati O n s a re SO h ig h . FIG. 1. The semiempirical pair potential between two helium

atoms: solid line, Aziz et al. (1992); dashed line, Lennard-
Jones 6-12 potential with € = 10.22 K and ¢ = 2.556 A.
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eTwo isotopes:
e 3He (fermion: antisymmetric trial function, spin 1/2)
e “He (boson: symmetric trial function, spin zero)
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Helium phase diagram

eBecause interaction is so weak
helium does not crystallize at low
temperatures. Quantum exchange
effects are important

eBoth isotopes are quantum fluids
and become superfluids below a
critical temperature.

eOne of the goals of computer
simulation is to understand these
states, and see how they differ from
classical liquids starting from non-
relativistic Hamiltonian:
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Path Integral explanation of Boson superfluidity

e Exchange can occur when thermal wavelength is greater than
interparticle spacin
P pacing kBTSthz/d/m

e Localization in a solid or glass can prevent exchange.

e Macroscopic exchange (long permutation cycles) is the
underlying phenomena leading to:

— Phase transition: bump in specific heat: entropy of long cycles
— Superfluidity: winding paths
- Offdiagonal long range order --momentum condensation
separation of cut ends
- Absence of excitations (gaps)
e Some systems exhibit some but not all of these features.
e Helium is not the only superfluid. (2001 Nobel Prize for BEC)

Ceperley PIMC for bosons 4



Superfluidity: Two-Fluid Model

Landau Two-Fluid Model: — +
superfluid: P=PuTPs
— irrotational, aviscous fluid. Does

not couple to boundaries because
of the absence of states.

normal fluid:

— created by thermal excitations of
superfluid and density gradients.

Two-fluid model is phenomenological -- what happens on a microscopic scale?
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viscous penetration depth
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Imaginary Time Path Integrals

PHYSICAL REVIEW

oA journal of experimental and theoretical physics established by E. L. Nichols in 1893
SEPTEMBER 15, 1953

Steund Series, Vou. 91, No. 6

Atomic Theory of the a Transition in Helium

. R. P. FEyNMAN
Califermia Institute of Technology, Pasadena, California
(Received May 1S, 1953)

It is siown from first principles that, in spitc of the large interatomic forces, liquid He* should exhibit a
transition analogous to the transition in an ideal Bose-Einstein gas. The exact partition function is written
as an integral over trajectories, using the space-time approach to quantum mechanics. It is next argued
that the motion of vne atom through the others is not opposed by a potential barrice because the others
may move out of the way. This just increases the cffective inertia of the moving atom. This permits a
simpler form to be written for the partition function. A rough analysis of this form shows the existence of a
transition, but of the tkird ordcr. Tt is possible that a more complete analysis would show that the transiiion
impliad by the simplitied partstion iunction is actually like the experimental one.,
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The thermal density matrix

d b d H¢0{ = E0(¢0(

Find exact many-body -
eigenstates of H. P(R; ) = Z‘%(R)‘z e Pra
Probability of o

occupying state a is n ]
exp(-BE,) Pp=¢€

off-diagonal density matrix:

AR operator notation

All equilibrium

properties can be NRY — P ~PE,
calculated in terms of PR, R ) 2¢a (R)9,(R)e
thermal o-d density «

matrix P(R,R" f) =0 (without statistics)
Convolution theorem

relates high P(R,R,; b+ ,)=

temperature to lower : : :
temperature. = J.dR PR, R B)p(R',R,; 5,)

or with operators: e PHPIH _ o -BH -BH
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Trotter s formula (1959)

e We can use the effects of operators /3 _ e—ﬂ(ﬁl;)
separately as long as we take small
enough time steps. A - L
g P p:hmM%[e o, w}
M is number of time slices.
’ t=B/M

7 is the “time-step”

We now have to evaluate the density matrix for potential and
kinetic matrices by themselves:

n _ 2
Do by FT's <r e’ r'> = (471'2,7:) ¥ e_(r_r) e
V is “diagonal <r o ,,.> —S5(r—re ™"
Error at finite n is roughly: 2
comes from communtator —7[T,V]
e
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Using this for the density matrix.

e We sample the distribution:

M M
_2 S(RI 9Ri+1 ;T) _z S(Rl ’Ri+1 ;T)
e = //Z  with Z = Jde...dRMe i=!

Where the “primitive” link action is:

_ 2
S(R,,R ;t) = —37N1n(47t7u')+ (ROMI:I) +5[VR,)+VR))]

e Similar to a classical integrand where each particle
turns into a “polymer.”

- K.E. is spring term holding polymer together.
- P.E. is inter-polymer potential.
e Trace implies R;=R,,,; = closed or ring polymers
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“Distinguishable” particles

Each atom is a ring
polymer; an exact
representation of a
quantum wavepacket in
imaginary time.

Trace picture of 2D helium.
The dots represent the
“start” of the path (all
points are equivalent)
The lower the real
temperature, the longer
the “string” and the more
spread out the wavepacket.

y (&)
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Quantum statistics

For quantum many-body problems, not all states are allowed: allowed
are totally symmetric or antisymmetric. Statistics are the origin of
BEC, superfluidity, lambda transition.

Use permutation operator to project out the correct states:

Pf(R)= > 4/ (PR)

M
_ZS(Ri’RiH)

Z= iﬁdeI...dRMe
P=1

Means the path closes on itself with a permutation. R,=PR,,.
Too many permutations to sum over; we must sample them.

PIMC task: sample path { R;,R,,...R,, and P} with Metropolis Monte
Carlo (MCMC) using “action”, S, to accept/reject.
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Exchange picture

Average by
sampling over all
paths and over
connections.

Trial moves involve
reconnecting paths
differently.

At the superfluid
transition a
“macroscopic”
permutation
appears.

This is reflection of
bose condensation
within PIMC.

Ceperley PIMC for bosons
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“entangled” liquid

Normal “atomic’ state
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ENERGY

Bose statistics have a small
effect on the energy

Below 1.5K “4He is in the
ground state.

—lab‘"‘I".'|T""1"‘]"Jl7
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SPECIFIC HEAT

Characteristic A shape
when permutations become
Macroscopic

e Finite size effects cause
rounding above transition

(4 Dows 1 S(n=c)- VV\
T [

Kinetic term becomes sm‘aller because N
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Superfluidity and PIMC

rotating disks:
“He :
Andronikashvili’ s expt (1946)
(P, +Pny =P)

e We define superfluidity as a linear response to a velocity perturbation
(the energy needed to rotate the system) “NCRI=nonclassical
rotational inertia P, : 7 B dF

P /I dw’

C

o=0
e To evaluate with Path Integrals, we use the Hamiltonian in rotating
frame:

H =H,—oL,
1 B 7 ) @

L Jdti g B [ it
Ic z z )

P

A2
p, _2m (A

0 IB Al A = signed area of imaginary-time paths
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Winding numbers in
periodic boundary conditions

e Distort annulus

o N A dr (D)
e The area becomes the winding W = Zjdt d
(average center of mass velocity) i=1 ¢
e The superfluid density is now estimated as: /Wz\
P _\"

e Exact linear response formula. (analogous to relation between
X ~<M2> for Ising model.

e Relates topological property of paths to dynamical response.
Explains why superfluid is “protected.”

e Imaginary time dynamics is related to real time response.

e How the paths are connected is more important than static
correlations.
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Superfluidity in pure Droplets

e 64 atom droplet goes into the p, 2m <A§\
superfluid state in o B AI
temperature range 1K <T s ‘
<2K. S R B L

NOT A PHASE TRANSITION! i

e But almost completely
superfluid at 0.4K (according 4
to response criteria.)

e Superfluidity of small dropletx\ 0.6
recently verified. <

Sindzingre et al 1990 0.4

Bulk
experiment

Ceperley PIMC for bosons
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Bose condensation

BEC is the macroscopic occupation of a single quantum state
(e.g. momentum distribution in the bulk liquid).

d’rd’
n, = j i 3S exp(—ik(r —s))n(r,s)
The one particle élze%)silt/y matrix is defined in terms of open
paths:

_ﬁH

S,Vz..J'N>

We cannot calculate n(r,s) on the diagonal. We need one
open path, which can then exchange with others.

Condensate fraction is probability of the ends being widely
separated versus localized. ODLRO (off-diagonal long range
order) (The FT of a constant is a delta function.)

The condensate fraction gives the linear response of the
system to another superfluid.

n(r,s) = gjdrz...dr]\, <r,r2...rN ‘e
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Comparison with experiment

Single particle density matrix Condensate fraction

Vv
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Dictionary of the Quantum-Classical Isomorphism

Properties of a quantum system are mapped into
properties of the fictitious polymer system

Attention: some words have opposite meanings.

Quantum

Classical

Bose condensation

Delocalization of ends

Boson statistics

Joining of polymers

Exchange frequency

Free energy to link polymers

Free energy

Free energy

Imaginary velocity

Bond vector

Kinetic energy

Negative spring energy

Momentum distribution

FT of end-end distribution

Particle

Ring polymer

Potential energy

Iso-time potential

Superfluid state

Macroscopic polymer

Temperature

Polymer length
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Some current applications of PIMC

e Helium 4:
— “supersolid,”
— Vortices
— Droplets
— Metastable high pressure liquid
e 2D and 3D electron gas:
— Phase diagram
— stripes
— Disorder
— Polarization
e Hydrogen H,O at high pressure and temperature
e \ortex arrays
e Pairing in dilute atom gases of fermions
e BEC in atom trap experiments
e Liquid metals near their critical point
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