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Liquid helium 
the prototypic quantum fluid 

•  A helium atom is an elementary 
particle. A weakly interacting 
hard sphere. First electronic 
excitation is 230,000 K. 

•  Interatomic potential is known 
more accurately than any other 
atom because electronic 
excitations are so high.  

• Two isotopes:  
•  3He (fermion: antisymmetric trial function, spin 1/2)  
•  4He (boson: symmetric trial function, spin zero) 



Ceperley  PIMC for bosons                    3 

Helium phase diagram 

• Because interaction is so weak 
helium does not crystallize at low 
temperatures. Quantum exchange 
effects are important 
 
• Both isotopes are quantum fluids 
and become superfluids below a 
critical temperature. 
 
• One of the goals of computer 
simulation is to understand these 
states, and see how they differ from 
classical liquids starting from non-
relativistic Hamiltonian:    
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Path Integral explanation of Boson superfluidity 

•  Exchange can occur when thermal wavelength is greater than 
interparticle spacing 

•  Localization in a solid or glass can prevent exchange. 
•  Macroscopic exchange (long permutation cycles) is the 

underlying phenomena leading to: 
–  Phase transition: bump in specific heat: entropy of long cycles 
–  Superfluidity:   winding paths 
–  Offdiagonal long range order --momentum condensation  

separation of cut ends 
–  Absence of excitations (gaps) 

•  Some systems exhibit some but not all of these features. 
•  Helium is not the only superfluid. (2001 Nobel Prize for BEC) 

  kB T ≤ h2 ρ2/d / m
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Superfluidity:  Two-Fluid Model 
Landau Two-Fluid Model:   

 superfluid: 
–  irrotational, aviscous fluid. Does 

not couple to boundaries because 
of the absence of states. 

 normal fluid: 
–  created by thermal excitations of 

superfluid and density gradients. 

Andronikashvili Experiment: 
 normal fluid between disks rotates rigidly with system 

viscous penetration depth 

sn ρ+ρ=ρ

ρω
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Two-fluid model is phenomenological -- what happens on a microscopic scale? 

phonon 

roton 
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Imaginary Time Path Integrals 
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The thermal density matrix 
 
•  Find exact many-body 

eigenstates of H. 
•  Probability of 

occupying state α is 
exp(-βEα) 

•  All equilibrium 
properties can be 
calculated in terms of 
thermal o-d density 
matrix  

•  Convolution theorem 
relates high 
temperature to lower 
temperature. 
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Trotter’s formula (1959) 
•  We can use the effects of operators  
separately as long as we take small  
enough time steps. 
 
•  M is number of time slices. 
•  τ  is the “time-step” 

•  We now have to evaluate the density matrix for potential and 
kinetic matrices by themselves: 

•  Do by FT’s 

•  V is “diagonal” 

•  Error at finite n is roughly: 
 comes from communtator  

   

ρ̂ = e−β (T!+V! )

ρ̂ = lim M→∞ e−τ T!e−τV!⎡
⎣

⎤
⎦

M

τ = β / M
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•  We sample the distribution: 

 
Where the “primitive” link action is: 

•  Similar to a classical integrand where each particle 
turns into a “polymer.”  
–  K.E. is spring term holding polymer together. 
–  P.E. is inter-polymer potential. 

•  Trace implies R1=Rm+1  ð closed or ring polymers 

  e
− S(Ri ,Ri+1 ;τ )

i=1

M

∑
/ Z   with   Z = dR

1∫ ...dR
M
e
− S(Ri ,Ri+1 ;τ )

i=1

M

∑

  
S(R0,R1;t) = − 3N

2
ln 4πλτ( ) + (R0 − R1)2

4λτ
+ τ2 V(R0 )+ V(R1)⎡⎣ ⎤⎦

Using this for the density matrix. 
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“Distinguishable” particles 
•  Each atom is a ring 

polymer; an exact 
representation of a 
quantum wavepacket in 
imaginary time. 

•  Trace picture of 2D helium.  
The dots represent the 
“start” of the path (all 
points are equivalent) 

•  The lower the real 
temperature, the longer 
the “string” and the more 
spread out the wavepacket. 
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Quantum statistics 

•  For quantum many-body problems, not all states are allowed: allowed 
are totally symmetric or antisymmetric. Statistics are the origin of 
BEC, superfluidity, lambda transition. 

•  Use permutation operator to project out the correct states: 

 
 
 
 
 
 
•  Means the path closes on itself with a permutation. R1=PRM+1 
•  Too many permutations to sum over; we must sample them. 
•  PIMC task: sample path { R1,R2,…RM and P} with Metropolis Monte 

Carlo (MCMC) using “action”, S,  to accept/reject.   
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Exchange picture 
•  Average by 

sampling over all 
paths and over 
connections. 

•  Trial moves involve 
reconnecting paths 
differently. 

•  At the superfluid 
transition a 
“macroscopic” 
permutation 
appears. 

•  This is reflection of 
bose condensation 
within PIMC. 
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T=2.5K        T=1K 

Normal “atomic” state    “entangled” liquid 



Ceperley  PIMC for bosons                    24 

ENERGY 
Bose statistics have a small 

effect  on the energy 
Below 1.5K  4He is in the 

ground state.  
             

SPECIFIC HEAT 
•  Characteristic λ  shape 

when permutations become 
macroscopic 

•  Finite size effects cause 
rounding above transition 

              

Kinetic term becomes smaller because  Ncycle<N.     Springs stretched more.    
E = V +

3Ncycles

2β
+ 1

2
(ri − ci ) ⋅∇iV
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Superfluidity and PIMC 

•  We define superfluidity as a linear response to a velocity perturbation 
(the energy needed to rotate the system) “NCRI=nonclassical 
rotational inertia” 

•  To evaluate with Path Integrals, we use the Hamiltonian in rotating 
frame: 
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Andronikashvili’s expt (1946) 

rotating disks:   
4He 
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•  Distort annulus 

•  The area  becomes the winding  
 (average center of mass velocity) 

•  The superfluid density is now estimated as: 

•  Exact linear response formula. (analogous to relation between 
χ ~<M2> for Ising model. 

•  Relates topological property of paths to dynamical response. 
Explains why superfluid is “protected.” 

•  Imaginary time dynamics is related to real time response. 
•  How the paths are connected is more important than static 

correlations.   

Winding numbers in  
periodic boundary conditions 
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Superfluidity in pure Droplets 

•  64 atom droplet goes into the 
superfluid state in 
temperature range 1K <T 
<2K.   
NOT A PHASE TRANSITION! 

•  But almost completely 
superfluid at 0.4K (according 
to response criteria.) 

•  Superfluidity of small droplets 
recently verified. 

Sindzingre et al 1990 
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ρ
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Bulk 
experiment 

Droplet 
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Bose condensation 

•  BEC is the macroscopic occupation of a single quantum state 
(e.g. momentum distribution in the bulk liquid). 

•  The one particle density matrix  is defined in terms of open 
paths: 

•  We cannot calculate n(r,s) on the diagonal. We need one 
open path, which can then exchange with others.   

•  Condensate fraction is probability of the ends being widely 
separated versus localized. ODLRO (off-diagonal long range 
order) (The FT of a constant is a delta function.) 

•  The condensate fraction gives the linear response of the 
system to another superfluid. 

  
nk =

d 3rd 3s
(2π )3V∫ exp(−ik(r − s))n(r,s)

  
n(r,s) =

V
Q

dr2∫ ...drN r,r2...rN e−βH s,r2...rN
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Comparison with experiment 
Single particle density matrix  Condensate fraction 

Neutron scattering cross 
section 
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Dictionary of the Quantum-Classical Isomorphism 
Properties of a quantum system are mapped into 

properties of the fictitious polymer system 
Attention: some words have opposite meanings. 

Quantum Classical 
Bose condensation Delocalization of ends 

Boson statistics Joining of polymers 

Exchange frequency Free energy to link polymers 

Free energy Free energy 

Imaginary velocity Bond vector 

Kinetic energy Negative spring energy 

Momentum distribution FT of end-end distribution 

Particle Ring polymer 

Potential energy Iso-time potential 

Superfluid state Macroscopic polymer 

Temperature Polymer length 
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Some current applications of PIMC 
•  Helium 4:  

–  “supersolid,”  
–  Vortices 
–  Droplets 
–  Metastable high pressure liquid 

•  2D and 3D electron gas:  
–  Phase diagram 
–  stripes  
–  Disorder 
–  Polarization 

•  Hydrogen  H2O at high pressure and temperature 
•  Vortex arrays 
•  Pairing in dilute atom gases of fermions 
•  BEC in atom trap experiments 
•  Liquid metals near their critical point 


