The Ising Model

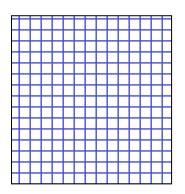
Today we will switch topics and discuss one of the most studied models in statistical physics the **Ising Model**

- Some applications:
 - Magnetism (the original application)
 - Liquid-gas transition
 - Binary alloys (can be generalized to multiple components)
- Onsager solved the 2D square lattice (1D is easy!)
- Used to develop *renormalization group theory* of phase transitions in 1970's.
- Critical slowing down and "cluster methods".

Figures from Landau and Binder (LB), MC Simulations in Statistical Physics, 2000.

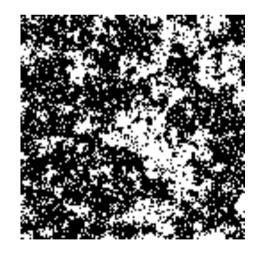
The Model

- Consider a lattice with L² sites and their connectivity (e.g. a square lattice).
- Each lattice site has a single spin variable: $s_i = \pm 1$.
- With magnetic field **h**, the energy is:



$$H = -\sum_{(i,j)} J_{ij} s_i s_j - \sum_{i=1}^{N} h_i s_i$$
 and $Z = \sum_{i=1}^{N} e^{-\beta H_i}$

- J is the nearest neighbors (i,j) coupling:
 - -J > 0 ferromagnetic.
 - -J < 0 antiferromagnetic.
- •Picture of spins at the critical temperature T_c. (Note that connected (percolated) clusters.)



Mapping liquid-gas to Ising

• For *liquid-gas* transition let n(r) be the density at lattice site r and have two values n(r)=(0,1).

$$E = \sum_{(i,j)} v_{ij} n_i n_j + \mu \sum_i n_i$$

Let's map this into the Ising model spin variables:

$$s = 2n - 1 \quad \text{or} \quad n = \frac{1}{2}(s + 1)$$

$$H = \frac{v}{4} \sum_{(i,j)} s_i s_j + \frac{(v + \mu)}{2} \sum_i s_i + c$$

$$J = -v / 4$$

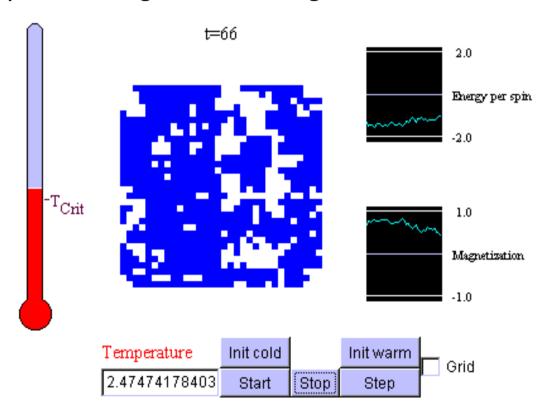
$$h = -(v + \mu) / 2$$

$$M = \frac{1}{N} \sum_i s_i \qquad \langle n \rangle = \frac{1}{N} \sum_i n_i = \frac{1}{2}(M + 1)$$

JAVA Ising applet

http://physics.weber.edu/schroeder/software/demos/IsingModel.html

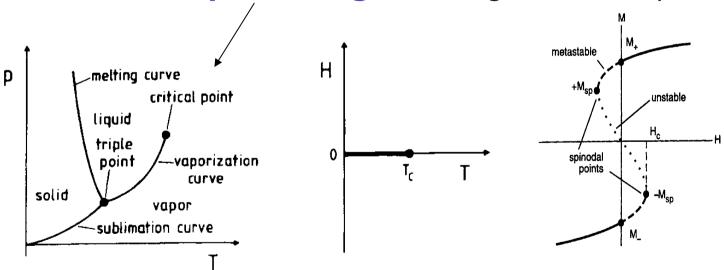
Dynamically runs using heat bath algorithm.



Atomic Scale Simulation 4

Phase Diagram

- High-T phase: spins are random (uncorrelated).
- T > T_c phase near T_c: spins are random but correlated: magnetic short-range (local) order.
- Low-T (T~0) phase: spins are aligned (fully correlated).
- A first-order transition (where there is a discontinuous jump in M) occurs as H passes through zero for T<T_c.
- Similar to LJ phase diagram. Magnetic field=pressure.



Critical point

- Concepts and understanding are universal.
 Apply to all phase transitions of similar type.
- Order parameter is *average* magnetization: <s(r)>=m(r)
- Look at correlation function: $\chi(r-r') = \langle s(r)s(r') \rangle \langle s(r) \rangle \langle s(r') \rangle$.
- Magnetic susceptibility is: $dm(r)/dh(r')|_{h\to 0} = \beta \chi(r-r')$
- In ordered phase, spin is correlated over long distance.
- At critical point, fluctuations of all scales.

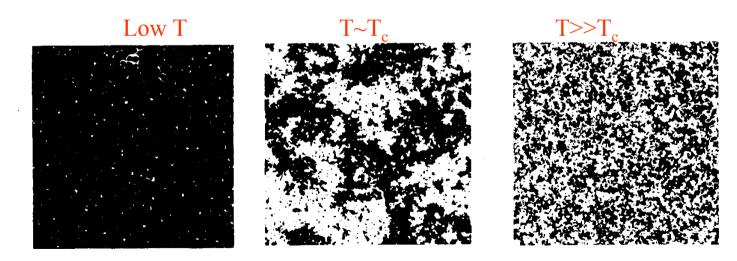
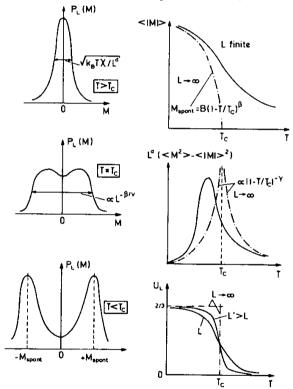


Fig. 4.1 Typical spin configurations for the two-dimensional Ising square lattice: (left) $T \ll T_c$; (center) $T \sim T_c$; (right) Atomic Scaler Simulation

Magnetization probability

- How does magnetization vary across transition?
- And with the system size?
- In ordered phase, broken symmetry and barrier to flipping.



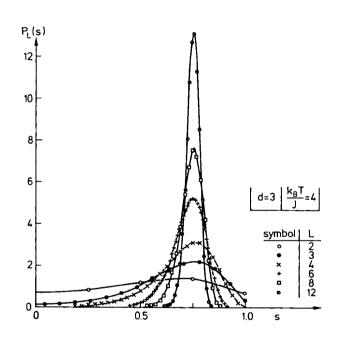


Figure 2. Probability distribution $P_L(s)$ of the magnetization s per spin of $L \times L \times L$ subsystems of a simple cubic Ising lattice with $N=24^3$ spins and periodic boundary conditions for zero magnetic field and temperature $k_BT/J=4.0$ (note that the critical temperature occurs at about $k_BT_c/J\approx 4.51[26]$.

Figure 3. Schematic variation of the probability distribution $P_L(m)$ to magnetization m in a finite system of linear dimension L from $T > T_c$ to (left part) and the associated temperature variation of the average order part |m| >, "susceptibility" $k_B T \chi' = L^d (\langle m^2 \rangle - \langle |m| \rangle^2)$ and reduced order cumulant $U_L = 1 - \langle m^4 \rangle / [3 \langle m^2 \rangle^2]$ (right part).

- If we quench too fast we will end in a two phase region.
- The larger the system the sharper the phase transition.

Phase Diagram: T vs. M

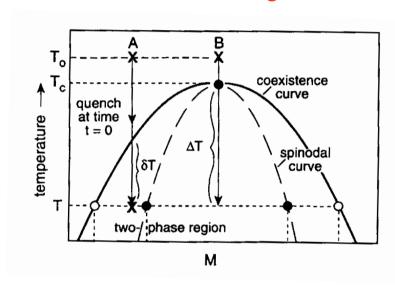
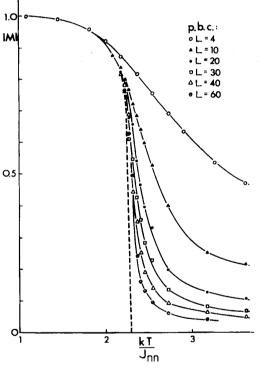


Fig. 2.11 Schematic phase coexistence diagram showing the 'spinodal' line. Paths (A) and (B) represent quenches into the nucleation regime and the spinodal decomposition regime, respectively.

|M| vs. $1/\beta J$ for varying L



Magnetization Scaling depends on T:

$$M \sim (T_c - T)^{\beta}$$

 $\beta = 0.125 \text{ for D} = 2.$

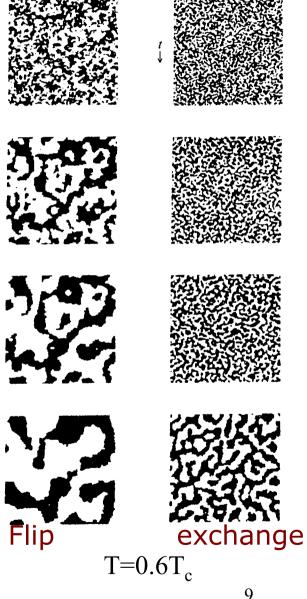
$$\beta = 0.325$$
 for D=3.

for
$$T < T_c$$

Spinoidal decomposition

Suppose spin flips only locally.

- Model for phase separation such as a binary "alloy" (oil and vinegar).
- Dynamics depends on whether the spin is conserved
 - Spin flip (left)
 - Spin exchange (right). conserves particle number
- Transition appears through a coarsening of the separation.
- Becomes slower and slower as the transition proceeds.
 - Critical Slowing down.

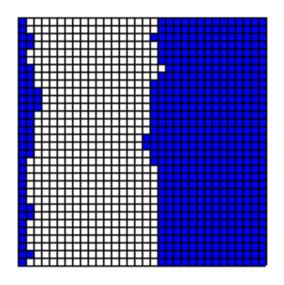


Surfaces/Boundary Conditions

- By quenching quickly we may catch a "trapped" surface.
- Topological excitation.
- You can see steps, etc.
- Can use twisted boundary conditions to study a liquid-gas surface without worrying about it disappearing.
- Just put -J along one plane (side).
 Antiferromagnetic interaction along one plane.

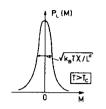
$$H = -\sum_{(i,j)} J_{ij} s_i s_j$$

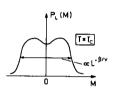
$$J_{ij} = \begin{cases} J & i \neq 0 \\ -J & i = 0 \end{cases}$$

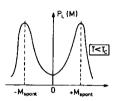


Critical slowing down

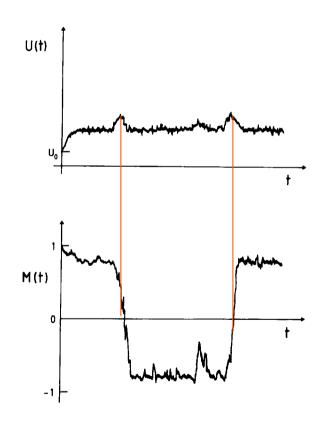
- Near the transition dynamics gets very slow if you use any local update method.
- The larger the system th less likely it is that the system can flip over.







Monte Carlo of a zero-field Ising Lattice U vs. time and M vs. time.



Metropolis importance sampling Monte Carlo scheme

- (1) Choose an initial state
- (2) Choose a site i
- (3) Calculate the energy change ΔE which results if the spin at site i is overturned
- (4) Generate a random number r such that 0 < r < 1
- (5) If $r < \exp(-\Delta E/k_B T)$, flip the spin
- (6) Go the next site and go to (3)

Local versus cluster algorithms

- Simplest Metropolis:
 - Lots of tricks to make it run faster.
 - Tabulate exp(-E/kT)
 - Do several flips each cycle by packing bits into a word
 - But critical slowing down near Tc.
 - At low T accepted flips are rare--can speed up by sampling acceptance time.
 - At high T all flips are accepted--ergodic problem.

Metropolis importance sampling Monte Carlo scheme

- (1) Choose an initial state
- (2) Choose a site i
- (3) Calculate the energy change ΔE which results if the spin at site i is overturned
- (4) Generate a random number r such that 0 < r < 1
- (5) If $r < \exp(-\Delta E/k_B T)$, flip the spin
- (6) Go the next site and go to (3)

Atomic Scale Simulation 12

Glauber and Kawasaki dynamics

Heat bath or Glauber:

- Pick a spin and flip with probability
- Will have lower flipping rate but no high T problem.

$$p^{i} = \frac{\pi_{i}}{\pi_{i} + \pi_{j}} = \frac{1}{1 + e^{-\beta \Delta E}}$$

N-fold way:

- Look at all the sites, choose the site "i" according to:
- The normalization determines how time advances.
- Discuss this later with kinetic MC

Kawasaki dynamics

- Exchange spins and accept or reject
- Spin is constant as in spinoidal decomposition.
- ALL THESE ARE LOCAL hence suffer from slowdown.

$$T^i = \frac{\pi_i}{\sum_i \pi_j}$$

Swendsen-Wang cluster algorithm

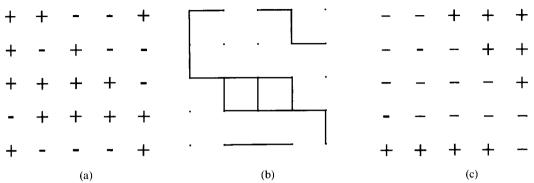


Fig. 5.1 Schematic view of the Swendsen-Wang algorithm for an Ising model: (a) original spin configuration; (b) clusters formed: (c) 'decorated' clusters.

Wolff cluster flipping method for the Ising model

- (1) Randomly choose a site
- (2) Draw bonds to all nearest neighbors with probability $p = 1 e^{-K\delta_{\sigma_i \sigma_j}}$
- (3) If bonds have been drawn to any nearest neighbor site j, draw bonds to all nearest neighbors k of site j with probability $p = 1 e^{-K\delta_{\sigma_j\sigma_k}}$
- (4) Repeat step (3) until no more new bonds are created
- (5) Flip all spins in the cluster
- (6) Go to (1)

Swendsen-Wang algorithm for a q-state Potts model

- (1) Choose a spin
- (2) Calculate $p = 1 e^{-K\delta_{\sigma_i\sigma_j}}$ for each nearest neighbor
- (3) If p < 1, generate a random number 0 < rng < 1; If rng < p place a bond between sites i and j
- (4) Choose the next spin and go to (2) until all bonds have been considered
- (5) Apply the Hoshen-Kopelman algorithm to identify all clusters
- (6) Choose a cluster
- (7) Generate a random integer $1 \le R_i \le q$
- (8) Assign $\sigma_i = R_i$ to all spins in the cluster
- (9) Choose another cluster and go to (7)
- (10) When all clusters have been considered, go to (1)

No critical slowing down at the critical point.

Non-local algorithm. Prove detailed balance! See FS 399-408