The Ising Model

Today we will switch topics and discuss one of the most
studied models in statistical physics the Ising Model

e Some applications:

— Magnetism (the original application)

— Liquid-gas transition

— Binary alloys (can be generalized to multiple components)
e Onsager solved the 2D square lattice (1D is easy!)

e Used to develop renormalization group theory of phase
transitions in 1970’ s.

e Critical slowing down and “cluster methods”.

Figures from Landau and Binder (LB), MC Simulations in Statistical
Physics, 2000.
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The Model

e Consider a lattice with L2 sites and their
connectivity (e.g. a square lattice).

e FEach lattice site has a single spin variable: s; = +1.
e With magnetic field h, the energy is:

H=-> JZ.J.SI.SJ. —ihl.sl. and 7 =

(1.))

¢] is the nearest neighbors (i,j) coupling:
-J > 0 ferromagnetic.
-] < 0 antiferromagnetic.

ePicture of spins at the critical temperature T..
(Note that connected (percolated) clusters.)
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Mapping liquid-gas to Ising

e For liquid-gas transition let n(r) be the density at
lattice site r and have two values n(r)=(0,1).

E = Zvl.jninj + ,uZni
(i) i
e Let’'s map this into the Ising model spin variables:

s=2n—1 or n=%(s+1)

iSj
4(i,j) i
J=—v/4
h=—(v+u)/2
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JAVA Ising applet

Dynamically runs using heat bath algorithm.
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Phase Diagram

e High-T phase: spins are random (uncorrelated).

e T > T_phase near T_: spins are random but correlated:
magnetic short-range (local) order.

e Low-T (T~0) phase: spins are aligned (fully correlated).

o A first-order transition (where there is a discontinuous
jump in M) occurs as H passes through zero for T<T,.

e Similar to LJ phase diagram. Magnetic field=pressure.
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Critical point

e Concepts and understanding are universal.
Apply to all phase transitions of similar type.
e Order parameter is average magnetization: <s(r)>=m(r)

e Look at correlation function: y(r-r' )=<s(r)s(r’ )>-<s(r)><s(r’ )>.
e Magnetic susceptibility is: dm(r)/dh(r’ )|,5¢ = Bx(r-r’)

e In ordered phase, spin is correlated over long distance.

e At critical point, fluctuations of all scales.

Low T

~_Fig. 41 Typical spin configurations for the two-dimensional Ising square lattice: (left) 7 << T¢; (center) 7"~ T,; (right)
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Magnetization probability
e How does magnetization vary across transition?

e And with the system size?
e In ordered phase, broken symmetry and barrier to flipping.
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Figure 2. Probability distribution Py (s) of the magnetization s per spin of LXxLXx L
subsystems of a simple cubic Ising lattice with N = 24° spins and periodic boundary
Te T conditions for zero magnetic field and temperature kgT/J = 4.0 (note that the
critical temperature occurs at about kgT./J =~ 4.51{26].

Figure 3. Schematic variation of the probability distribution Pr(m) to

magnetization m in a finite system of linear dimension L from 7' > T: to

(left part) and the associated temperature variation of the average order pai

< |m] >, “susceptibility” kpTx' = LY (< m?2 > - < |m| >?) and reduced 7
order cumulant U, = 1— < m* >/ [3 < m? >2] (right part).



temperature —»

-

e If we quench too fast we will end in a two phase region.
e The larger the system the sharper the phase transition.

Phase Diagram: T vs. M
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Fig. 2.11 Schematic
phase coexistence
diagram showing the
‘spinodal’ line. Paths
(A) and (B) represent
quenches into the
nucleation regime and
the spinodal

decomposition regime,

respectively.

Magnetization Scaling depends on T:
M~ (T-T)?

B=0.125 for D=2.
B=0.325 for D=3.

Atomic Scale Simulation

for T<T,

IMH

IM| vs. 1/BJ for varying L

0.
T~ p.b.c.:
ol.=4
AN sL=10
\ oL=20
A oL=30
.= 40
1 oL=60

a
\

S

F=pe: il

/.f' /
7

/ .

==
»

1 .
I\
Eiﬂ»;

ol —

Jmn



Spinoidal decomposition

o fastsr SO R
Suppose spin flips only locally. ;"_'{ e 3é , GG
_ IS X s N £ 55 s
e Model for phase separation such as a %{%}fg e
binary “alloy” (oil and vinegar). Daraisent

e Dynamics depends on whether the
spin is conserved

— Spin flip (left)

— Spin exchange (right). conserves
particle number

e Transition appears through a
coarsening of the separation.

e Becomes slower and slower as the
transition proceeds.

— Critical Slowing down.

exchange
T=0.6T,
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Surfaces/Boundary Conditions

e By quenching quickly we may catch , .
a “trapped” surface. l

e Topological excitation.
e You can see steps, etc.

e (Can use twisted boundary conditions
to study a liquid-gas surface without
worrying about it disappearing.

e Just put -] along one plane (side).
Antiferromagnetic interaction along

one plane.
H = —(%,) JZ.J.SZSJ
J 1#0
7 = ’
o =J i=0
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Critical slowing down

P_(M)

Near the transition
dynamics gets very slow e
if you use any local |
update method.

The larger the system th
less likely it is that the /C%
system can flip over.

Monte Carlo of a zero-field Ising Lattice
U vs. time and M vs. time.

Uit

[.»*/W\-m

Metropolis importance sampling Monte Carlo scheme

(D
(2)
3)

(4)
(5)
(6)

Choose an initial state

Choose a site ¢

Calculate the energy change A E which results if the spin at site ¢
is overturned

Generate a random number r such that 0 < r» < 1

If r < exp(—AE/kgT), flip the spin

Go the next site and go to (3)

o | e
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Local versus cluster algorithms

e Simplest Metropolis:
— Lots of tricks to make it run faster.
— Tabulate exp(-E/kT)
- Do several flips each cycle by packing bits into a word
— But critical slowing down near Tc.

— At low T accepted flips are rare--can speed up by sampling
acceptance time.

— At high T all flips are accepted--ergodic problem.

Metropolis importance sampling Monte Carlo scheme

(1) Choose an initial state

(2) Choose a site ¢

(3) Calculate the energy change AF which results if the spin at site ¢
is overturned

(4) Generate a random number 7 such that 0 < r < 1

(5) Ifr <exp(—AE/kgT), flip the spin

(6) Go the next site and go to (3)
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Glauber and Kawasaki dynamics

e Heat bath or Glauber:
— Pick a spin and flip with probability ,- T 1

- Will have lower flipping rate butno 7 =~ =1~

high T problem. P
e N-fold way:

— Look at all the sites, choose the site
“i” according to: T

— The normalization determines how T =<
time advances. Z,-”j

— Discuss this later with kinetic MC

o Kawasaki dynamics
— Exchange spins and accept or reject
— Spin is constant as in spinoidal
decomposition.

e ALL THESE ARE LOCAL hence suffer
from slowdown.
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Swendsen-Wang cluster algorithm
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Fig. 5.1 Schematic view of the Swendsen—Wang algorithm for an Ising model: (a) original spin configuration; (b) clusters
formed: (c) ‘decorated’ clusters.

Wolff cluster flipping method for the Ising model
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Randomly choose a site

Draw bonds to all nearest neighbors with probability
p=1- oK,

If bonds have been drawn to any nearest neighbor site j, draw
boggls to all nearest neighbors £ of site j with probability p = 1 —
e %%k

Repeat step (3) until no more new bonds are created

Flip all spins in the cluster

Go to (1)
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Swendsen-Wang algorithm for a g-state Potts model

1
@)
3)

4)

()
(6)
0
®)
)
(10)

Choose a spin

Calculate p =1 — ¢ %% for each nearest neighbor

If p < 1, generate a random number 0 < rng < I;

If rng < p place a bond between sites 7 and j

Choose the next spin and go to (2) until all bonds have been
considered

Apply the Hoshen—Kopelman algorithm to identify all clusters
Choose a cluster

Generate a random integer 1 < R; < g4

Assign o; = R; to all spins in the cluster

Choose another cluster and go to (7)

When all clusters have been considered, go to (1)

No critical slowing down at the critical point.

Non-local algorithm. Prove detailed balance! See FS 399-408
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