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Kinetic Monte Carlo (KMC) 

•  Molecular Dynamics (MD):   high-frequency motion dictate 
the time-step (e.g., vibrations).   
– Time step is short: pico-seconds. 

•  Direct Monte Carlo (MC): stochastic (non-deterministic) 
dynamics.  
–  Relation between tsim and treal must be established, 
perhaps by MD simulations.  

•  Kinetic MC (KMC): we take the dynamics of MC seriously. 
– We consider the state space to be discrete (for example 
assign an atom to a lattice site).  

– “Multi-scale” or “course graining” 
– Using MD, we calculate rates from one state to another. 

READING: Lesar Chapter 9 
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Kinetic Monte Carlo (KMC) 

•  With KMC we take the dynamics of MC seriously. 
•  Some applications: 

–  Magnetism (the original application) 
–  Particles diffusing on a surface. 
–  MBE, CVD, vacancy diffusion on surface, dislocation 

motion, compositional pattering of irradiated alloys,… 
 
ASSUMPTIONS 
•  States are discretized: si, spending only a small amount of 

time in between states. 
•  Hopping is rare so atoms come into local thermodynamic 

equilibrium in between steps (hence we have Markov process). 
•  We know hopping rates from state to state.   (Detailed 

balance gives relations between forward and reverse 
probabilities.) 
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Return to the Ising Model 
•  Suppose we have a lattice, with L2  lattice sites and 

connections between them. (e.g. a square lattice). 
•  On each lattice site, is a single spin variable: si = ±1. 
•  The energy is: 

 where h is the magnetic field 
•  J is the coupling between  

nearest neighbors (i,j) 
–  J<0 ferromagnetic 
–  J>0 antiferromagnetic. 

•  Alloy model 
•  Spin model 
•  Liquid/gas 
•  How do we make into KMC? 

€ 

H = Jijsi
(i , j )
∑ sj − hisi

i=1

N
∑

and Z = e–βH∑
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•  Suppose the spin variable is (0,1) 
–  S=0   the site is unoccupied 
–  S=1   the site is occupied 

•  4J is energy to break a bond. 
•  At most one particle/lattice site. 
•  Realistic dynamics must: 

–  Satisfy detailed balance 
–  Conserve particle number 
–  Be local 

•  Assume W is nonzero only for hopping to neighboring sites. 
•  Since there are a finite number of possibilities we can 

assign a transition rate to all moves (from MD) .  
•  Detailed balance gives relationship between pairs of moves 

that are inverses of each other. 
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1-D example 
•  Consider the 1D Ising model with local moves. 
•  We consider a move of site 2 to site 3 
         X 1 0  Y       to    X  0 1  Y 
•  There are 4 possibilities for the neighbors (X , Y)   
 

A:      1 1 0 0      to 1 0 1 0     state –D    ΔE=4J 
B:      1 1 0 1      to 1 0 1 1     state –B    ΔE=0 
C:      0 1 0 0      to 0 0 1 0     state –C    ΔE=0 
D:      0 1 0 1      to 0 0 1 1     state -A    ΔE=-4J 

 
Using Detailed balance, we have 3 independent rates 

 W(AàD)=exp(- DE/(kBT)) W(DàA) 
 W(BàB) 
 W(CàC) 

•  How do we get these rates?  From MD or experimental data. 
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The Master Equation: stochastic 
dynamics 

•  W(sàs’) is the probability per unit time that the system hops 
from s to s’ 

•  Let P(s;t) be probability that system is in state s at time t. 
Assume Markov process, then the master equation for P(s;t) is: 

 

•  Given ergodicity, there is a unique equilibrium state, perhaps 
determined by detailed balance. 

   P(s’, t=∞)W(s’à s) = P(s,t=∞) W(s à s’) 
 

Steady state is often Boltzmann distribution.  
                    P(s’, t=∞)=exp(-V/kT) 
(Detailed balance is sufficient not necessary) 
 

•  With KMC, we are interested in the dynamics not equilibrium 
distribution. How do we simulate the master equation? 
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dP (s, t)

dt
=

X

s0

[P (s0, t)W (s0 ! s)� P (s)W (s ! s0)]
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How to simulate?  Simple approach 
Trotter’s formula: at short enough time scale we can 

discretize time and consider events independent. 

•  Examine each particle: sample the time that particle k 
will hop. (OK as long as hops are non-interfering.) 

•  Solution to problem with a single event 

 
 

Alternative procedure sample the time for all the events 
and take the one that happens first (N-fold way). 

dP(s,t)
dt

= –W (s→ s ')P(s)

P(s,t) = e–Wt t(s→ s ') = − ln(u)
W (s→ s ')
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N-fold way 
Bortz, Kalos, Lebowitz, 1975 

•  Arrange different type of particles in lists 
–  N1 moves with transition W1 
–  N2 moves with transition W2 
–  N3 moves with transition W3 
–  N4 moves with transition W4 
 

•  Select a time for each class:     tk = -ln(uk)/WkNk 
     (Prove to be correct by considering the cumulant) 
•  Find j such that tj =minimum {tk}.  
•  Select a member of that class     i=Nju 
•  Make the move: time=time+tj 
•  Update the lists. (This is the key to an efficient algorithm) 

•  To calculate averages, weight previous state by time, tk; 
 
– Efficiency is independent of actual probabilities.  
– No time step errors. 
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Let us assume  
•  Adsorbed molecules do not interact  (otherwise, we have to 

consider rates for dimer formation and dimer splitting, etc.) 
•  Molecule arrives at surface at random, uncorrelated times 

characterized by average rate rA, similarly for desorption. 
•  Then, the surface coverage (or probability of adsorption) is: 

Example: simple adsorption-desorption of atom on surface. 

dθ(t)
dt

= rA[1−θ(t)]− rDθ(t)

θ(t) = rA
rA + rD

[1− e−(rA + rD )t ] t→∞% →%%
rA

rA + rD
Analytic 
Solution  

•  Transition Probabilities WA and WD should obey detailed balance 
since they are chosen at random and independently such that successful 
adsorption is WA[1-θ(t)] and desorption is WDθ(t). 

•  Average adsorption in T trials is <NA,T>= WA[1-θ(t)]T; thus 
steady-state is <NA,T>=<ND,T> or WA[1-θ]=WDθ.   Detailed Balance! 
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T=0, t=0

T=T+1 Select a
Random Site

Generate
R in (0,1)

Add species
To Lattice

t=t +t

T=T+1

Generate
R in (0,1)

Remove
 species

from Lattice

t=t +t

r ≤W?
r ≤W?

Occupied?
Y

Y N
NY

N

KMC for MBE 

Desorption Adsorption 

Increment clock 
Increment clock 
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Kinetic Monte Carlo (KMC) 

In other words 
•   Dynamical hierarchy is established for the transition 

probabilities. 
•  Independence of each event can be achieved. 
•  Time increments are calculated properly for successful 

(independent) events given by Poisson Process. 
–  e.g. probability of particular rate process: P(t) = e–Rt 

 
Example: simple adsorption-desorption of atom on surface. 

Time-dep. coverage of atoms matters. 
Dictates whether site is occupied or not. 

rA = adsorption rate 
rD = desorption rate 

Atomic Scale Simulation 



13 

Kinetic Monte Carlo (KMC) 

Example: simple adsorption-desorption of atom on surface. 
•  WAi = adsorption transition rate at site i. 
•  WDi= desorption rate at site i. 
•  rA= overall rate for event A. 
•  rD= overall rate for event D.  Total rate R= rA+rD. 
•  Event probability: PA = rA/R  and PD = rD/R. 

•  Hierarchy:   
–  Defined by Wi = ri/rmax. 
–   e.g., If rA > rD, then WA=1 and WD= rD/rA. 
–  Then, WA > WD and a hierarchy exists.  
–  This generalizes to many process, etc. 
 

•  Time will be reflected in these rates - the more probable 
an event, the less time passes between them.  
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Example of KMC - Vacancy Mediated Diffusion 
(thanks to E. Ertekin) 

Diffusion in solids is a complex, thermally activated process which can occur through a variety 
of mechanisms.   

We will use KMC to consider vacancy mediated diffusion, in which a vacancy undergoes a 
“random walk” through a discrete atomic lattice. 

The vacancy moves by swapping locations with neighboring atoms. 

If we choose an atom at random to “trace”, and keep track of its position over the course of the 
KMC simulation, we can estimate things like diffusion coefficients. 

From some remarkably general considerations (that I will not describe here), we can relate 
mean-field quantities such as diffusion coefficients to discrete systems 

€ 

J = −D•∇C ,  ∂C
∂t

= D∇2C, probability distributions governing random walks     ⇒      2dDt = R2
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1.  Identify all the relevant processes for your system. 

Example of KMC - Vacancy Mediated 
Diffusion 

•  p1, p2, p3, p4  have barrier EN 

•  p1, p2, p3, p4  have barrier ED 

8 “obvious” processes: 

What are other possible processes? 

- two vacancies come into contact with some binding energy 

-  atoms swap locations with each other 

-  atom adsorption from gas, desorption to a gas (vacancy destruction or creation) 

-  etc, etc but we will ignore these 
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2.  Determine (guess, estimate, calculate …) the activation barrier for each 
process.  Use transition state theory to assign a rate to each process.  We’ll denote 
by ri the rate of the ith process. 

Example of KMC - Vacancy Mediated 
Diffusion 

EN 

ED 

What are some ways to determine the transition barriers? 
Atomic Scale Simulation 17 



3.   The total rate at which “anything” happens is then given by 

Example of KMC - Vacancy Mediated 
Diffusion 

€ 

R = ri
i
∑ = 4ν exp −βEN[ ] + exp −βED[ ]( )

4.  Use R to choose from a poisson distribution the time at which the next event 
happens (first random number picked here). 

€ 

p t( ) = R exp −Rt( )
probability distribution for the 
next event to occur 

p(t) 

t 
How does one choose a number according to a poisson distribution?  
We want to identify a function f(x) so that computing f(xi)=ti generates 
ti according to p(t) (where xi is a random number uniformly distributed 
between 0 and 1. 

€ 

ti = −
1
R
ln xi

€ 

}
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Example of KMC - Vacancy Mediated 
Diffusion 

5.  Choose which event actually happens (second random number) from 
the rate catalog 

 
. 

€ 

pN1 =
rN1
R

=
exp −βEN[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

pN2 =
rN2
R

=
exp −βEN[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

pN3 =
rN3
R

=
exp −βEN[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

pN4 =
rN4
R

=
exp −βEN[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

pD1 =
rD1
R

=
exp −βED[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

pD2 =
rD2
R

=
exp −βED[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

pD3 =
rD3
R

=
exp −βED[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

pD4 =
rD4
R

=
exp −βED[ ]

4 exp −βEN[ ] + exp −βED[ ]( )

Advance the clock, update the configuration, 
and record whatever properties you are 
interested in for the new configuration. 
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Example of KMC - Vacancy Mediated 
Diffusion 

Repeat this process as long as reasonable.  At the end of the day, you 
will have something that looks like: 

Step Time Configuration

1 Δt1 C1

2 Δt1 +Δt2 C2

… … …

n Cn

€ 

Δti
i=1

n

∑

From this, we can compute 
properties of interest such as 
diffusion coefficients. 
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Kinetic Monte Carlo vs. MD 

MD: choose a potential, choose boundary conditions, and propagate the classical 
equations of motion forward in time.  If potential is accurate, if electron-phonon 
coupling (non Born-Oppenheimer behavior) is negligible, then the dynamical evolution 
will be a very accurate representation of the real physical system. 

Limitation is the time steps required by accurate integration (10-15 s to resolve atomic 
vibrations), generally limiting the total simulation time to microseconds. 

KMC: attempts to overcome this by exploiting that the long-time dynamics of a system 
typically consist of jumps from one configuration to another. 

In KMC, we do not follow trajectories, but treat the state transitions directly.  Time 
scales are seconds or longer (in fact, achievable time varies with simulation temperature 
by orders of magnitude). 

A key feature of KMC is that the configuration “sits” in some local minimum of 
configuration space for some time.  It then transitions out of that state and into others 
with the transition rates related to the barriers.  It does not matter how the system got 
into the current state in the first place - it is memoryless, and the process is Markovian. 
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What about the computational time in KMC?   

 Limited by searching through the rate catalog for the process  that has 
been selected, so for the most elementary searches,  KMC computational time 
will scale linearly with the number of processes.  More sophisticated search 
algorithms can give log(M) scaling. 

Why is KMC not exact? 

 - Inexact barriers.  That is, inexactly computed. 

 - In fact, the TST rate is not exact (harmonic approximation to  the 
minima & saddle point) but are pretty good (within 10-20%). 

 - Incomplete rate catalog.  This is arguably the biggest problem 
 in KMC.  Our intuition cannot often capture surprising reaction 
 pathways, and we neglect relevant physics. 

Kinetic Monte Carlo vs. MD 
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Example: Adatom surface diffusion on 
Al(100) 

•  Until 1990, diffusion of an adatom on an fcc(100) surface was 
thought to occur by a simple hopping from one site to another 

•  Feibelman (1990) discovered using density functional calculations that 
the primary diffusion pathway is quite different 

 
•  This new mechanism has now been observed for Pt(100) and Ir(100) 

surfaces via field ion microscopy 

After Voter, A.F. Radiation Effects in Solids, 2005: 
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