Phase transitions and
finite-size scaling

e Ciritical slowing down and “cluster methods”.
e Theory of phase transitions/ “Renormalization Group’

e Finite-size scaling

’

Detailed treatment: “Lectures on Phase Transitions and the
Renormalization Group” Nigel Goldenfeld (UIUC).

Atomic Scale Simulation



The Ising Model

e Suppose we have a lattice, with L2 lattice
sites and connections between them. (e.qg.
a square lattice).

e On each lattice site, is a single spin
variable: s; = +1.

e With mag. field h, energy is:

e Jis the coupling between
nearest neighbors (i,j)
- J>0 ferromagnetic
- J<0 antiferromagnetic.
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Phase Diagram

e High temperature phase: spins are random
e Low temperature phase: spins are aligned
e A first-order transition occurs as H passes through zero

for T<T..

e Similar to L] phase diagram. (Magnetic field=pressure).
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Simplest Metropolis:
— Tricks make it run faster.
— Tabulate exp(-E/kT)

- Do several flips each cycle by
packing bits into a word.

Local algorithms

But,

— Critical slowing down ~ T_.

—-At low T, accepted flips are rare
--can speed up by sampling
acceptance time.

—-At high T all flips are accepted

--quasi-ergodic problem.

(1)
(2)
3)

(4)
(5)
(6)

Metropolis importance sampling Monte Carlo scheme

Choose an initial state

Choose a site ¢

Calculate the energy change AE which results if the spin at site ¢
is overturned

Generate a random number » such that 0 < r < 1

If r < exp(—AE/kgT), flip the spin

Go the next site and go to (3)

Atomic Scale Simulation 4



Critical slowing down

e Near the transition

dynamics gets very slow if 1 Fig. 4.2 Schematic
you use any local update uth aiaton of ot
method. sponuneous
magnetization wit
e The larger the system the me fora Monte
less likely it is the the ﬂ/ Fsing;czlzarelatticcin
system can flip over. U, S
e Free energy barrier o
1
M(t)
0 —
f
-1
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Dynamical Exponent

Monte Carlo efficiency is 1000
governed by a critical g
dynamical exponent Z. T |
With t_ = correlation time -
and &= correlation length “E
. —| -
(= (Var(O)’cOtlme/step) : /57 12035
+ X
2
TO o< 5 /D 1oL Lo ?,Ll NS N R I Ry S
] 10 100
2
near I ¢—>L = 7L L
FIG. 1. Log-log plots of correlation times for Monte Carlo
T oc I simulations of the two-dimensional Ising model at the critical

temperature as a function of the linear dimension L. The cir-
cles show data for a standard Monte Carlo simulation, and the
Non-local updates reduce the line marked “z=2.125" gives the expected asymptotic slope

exponent, allowing exploration of (Ref. 4). The crosses show data for the new method, with a
The “critical region ” least-squares fit labeled with its slope of “z =0.35.”
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Swendsen-Wang algorithm
Phys. Rev. Letts 58, 86 (1987).
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Fig. 5.1 Schematic view of the Swendsen—Wang algorithm for an Ising model: (a) original spin configuration; (b) clusters
formed; (c) ‘decorated’ clusters.
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Wolff cluster flipping method for the Ising model

Randomly choose a site
Draw bonds to all
—Kb,q

p=1—e "%
If bonds have been drawn to any nearest neighbor site 7, draw

bonds to all nearest neighbors £ of site ; with probability p = 1 —
—K$
e %%

nearest neighbors with probability

Repeat step (3) until no more new bonds are created
Flip all spins in the cluster
Go to (1)

Little critical slowing down at the critical point.

Non-local algorithm
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Swendsen-Wang algorithm for a g-state Potts model
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Choose a spin

Calculate p =1 — ¢ X% for each nearest neighbor

If p < 1, generate a random number 0 < rng < I;

If rng < p place a bond between sites 7 and §

Choose the next spin and go to (2) until all bonds have been
considered

Apply the Hoshen—Kopelman algorithm to identify all clusters
Choose a cluster

Generate a random integer 1 < R, < g

Assign 0; = R; to all spins in the cluster

Choose another cluster and go to (7)

When all clusters have been considered, go to (1)




Correctness of cluster algorithm

e Cluster algorithm:
- Transform from spin space to bond space n;

(Fortuin-Kasteleyn transform of Potts model)
— Identify clusters: draw bond between

only like spins and those with p=1-exp(-2]J/kT)
— Flip some of the clusters.
— Determine the new spins

Example of embedding method: solve dynamics problem by
enlarging the state space (spins and bonds).

e Two points to prove: i
— Detailed balance H(G,n)=—H[(1—p)5n +p60 - S }
- joint probability: Z55) i Oy
— Ergodicity: we can go anywhere 1

How can we extend to other models? p=1—e€

2JIKT Y 8y,
Tr, {H(O',n)}:%e <i’j>( )
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RNG Theory of phase transitions

K. G. Wilson 1971

Fig. 4.1 Typical spin configurations for the two-dimensional Ising square lattice: (left) 7 < T; (center) T~ T.; (right)
T>»T..

e Near to critical point the spin is correlated over long
distance; fluctuations of all scales

e Near T, the system forgets most microscopic details.
Only remaining details are dimensionality of space and
the type of order parameter.

e Concepts and understanding are universal. Apply to all
phase transitions of similar type.

e Concepts: Order parameter, correlation length, scaling.
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Observations

What does experiment “see”?

» Critical points are temperatures (T), densities (p), etc., above which a parameter that
describes long-range order, vanishes.

— e.g., spontaneous magnetization, M(T), of a ferromagnet is zero above T..

— The evidence for such increased correlations was manifest in critical
opalescence observed in CO, over a hundred years ago by Andrews.

As the critical point is approached from above, droplets of fluid acquire a size on the order
of the wavelength of light, hence scattering light that can be seen with the naked eye!

* Define: Order Parameters that are non-zero below T, and zero above it.
— e.g., M(T), of a ferromagnet or p,- pg for a liquid-gas transition.

* Correlation Length ¢ 1s distance over which state variables are correlated.

Near a phase transition you observe:

— Increase density fluctuations, compressibility, and correlations (density-density,
spin-spin, etc.).
—\2
— Bump in specific heat, caused by fluctuations in the energy C = <(V — V) >

Atomic Scale Simulation 10



Blocking transformation

+ 1+ +{+ +|+
+ |+ +|+ +|+

ittt v+ e Add 4 spins together
SR R RN and make into one

sl 4le w4y superspin fI|pp!nga
w1+ +1+ 41+ coin to break ties.

e This maps H intoa new. -
H :ZKaSa H (with more long- i
o ranged interactions) -

S = 2 66] ° R(Hn) Hn+1

eCritical points are fixed points.
R(H*)=H*,

oAt a fixed point, pictures look the

Sa m e I Figure 11. "Snapshots” of the 2-dim Ising model at: (a) T = 0.9T¢; (b) T = T,
" (¢) T = 1.17.. The upper row shows Monte Carlo generated configurations on a
480 x 480 lattice with periodic boundaries. Successive rows show the configurations
after 2 X 2 blockspin transformations have been applied and the lattices rescaled to
their original size.
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Renormalization Flow

e Hence there is a flow in H space.

e The fixed points are the critical points.

e Trivial fixed points are at T=0 and T=oo.

e Critical point is a non-trivial unstable fixed point.

e Derivatives of Hamiltonian near fixed point gjve exponents.

See online notes for simple

example of RNG equations for

blocking the 2D Ising model

Atomic Scale Simulation

Corresponds to Te for
Ko next neares; neighbour

Ising mod

Critical FP

Corresponds to Tg for
nearest neighbour
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Temperature . v
FP < K|

Figure 9.3 Flow diagram for an Ising model with nearest and next nearest neighbour

interactions.
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Universality

e Hamiltonians fall into a few general classes according to
their dimensionality and the symmetry (or dimensionality)
of the order parameter.

e Near the critical point, an Ising model behaves exactly the
same as a classical liquid-gas. It forgets the original H, but
only remembers conserved things.

e EXxponents, scaling functions are universal

e T.P, ...are not (they are dimension-full).

e Pick the most convenient model to calculate exponents
e The blocking rule doesn’t matter.

e MCRG: Find temperature such that correlation functions,
blocked n and n+1 times are the same. This will determine
T. and exponents.

G. S. Pawley et al., Phys. Rev. B 29, 4030 (1984).
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Scaling is an important feature of

| phase transitions
In fluids,

* A single (universal) curve is found plotting T/T_ vs. p/p, .
« A fit to curve reveals that p, ~ [t}P ($=0.33).

— with reduced temperature |t| =|(T-T,)/T,|

— For percolation phenomena, [t| =2 |p|=|(p-p.)/P.|
* Generally, 0.33 <[ <0.37, e.g., for liquid Helium 3 = 0.354.

A similar feature is found for other quantities, e.g., in magnetism.

e Magnetization: M(T) ~ |t/ with 0.33 <3 <0.37.
» Magnetic Susceptibility: y(T) ~ |t with 1.3<y<14.
» Correlation Length: (T) ~ [t]Y where v depends on dimension.

« Specific Heat (zero-field): C(T) ~ [t[*  where a ~ 0.1

B, v, v, and a are called critical exponents.

Atomic Scale Simulation 14



Table 3.1 CRITICAL EXPONENTS FOR THE ISING

Exponents

__ 4~V __ 4B
UNIVERSALITY CLASS 5 =t M=t
Exponent Mean Field Experiment Ising (d =2) Ising (d = 3) % _ t_y C=¢t @
Y 0 (disc.) 0.110 - 0.116 0 (log) 0.110(5)
B ( 1/2) 0.316 - 0.327 1/8  0.325+0.0015 T
¥ 1 1.23-1.25 7/4 1.240540.0015 _
é 3 46-4.9 15 4.82(4) t=—-—1
v 1/2  0.625£0.010 1 0.630(2)
n 0 0.016 - 0.06 1/4  0.03240.003 c

0.2228

Table 1. Critical parameters for the n-vector model in d = 3 spatial dimensic
estimated by recent high-accuracy MC simulations, where K, = J/(kpT). 02224

e
simulations were performed on the simple cubic lattice except for the last entry wh
was done on the body-centered cubic lattice. The second entry has used MCRG & 4
determined n = 0.0262 + 0.003, from which B and v have been calculated via 1 0.2220 |
scaling laws. Similarly, for the third entry the paper gives v/v = 1.976 + 0.008. K (L) .
C
n  Ref. L< K. v I¢; y 0.2216 ¢
1 [40] 96 0.2216595 £ 0.0000026  0.6289 + 0.0008 0.3258 +0.0044 1.2390 + 0.0071 v
1 [41] 128 0.221652 + 0.000004 0.624 £ 0.002 0.320 £ 0.001 1.232 £ 0.006 02212
2 [42] 112 0.45420 4+ 0.00002 0.662 + 0.007 0.339 + 0.006 1.31 £ 0.02
3 [43] 40 0.693035 + 0.000037 0.7048 £ 0.003 0.3639 £ 0.0035 1.3873 + 0.085
3 [43] 40 0.486798 + 0.000012 (same) (same) (same) 0.2208

0.0000 0.0025 0.0050 0.0075

L—‘llv

) ) ) 5
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Primer for Finite-Size Scaling:
Homogeneous Functions

 Function f(r) “scales” if for all values of A, f(Ar)= g(A)f(r)

eg., f(N=Br"— fAN=Afr)—=gl)=1"

If we know function at f(r=r,), then we know it everywhere!

e The scaling function is not arbitrary; it must be g(A)=AP,
p=degree of homogeneity.

e A generalized homogeneous function is given by (since you can
always rescale by A-P with a’ =a/P and b’ =b/P)

FAx,A%y) = Af(x,y)

The static scaling hypothesis asserts that G(t,H), the Gibbs
free energy, is a homogeneous function.

e Critical exponents are obtained by differentiation, e.g. M=-dG/dH
A MA“t, A" H)y=AM(t,H) at H=0, M(@,0)=A%""M(A"t,0)
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Finite-Size Scaling

e General technique-not just for the Ising model, but for other
continuous transitions.

e Used to:
— Prove existence of phase transition
— Find exponents
- Determine T, etc.

e Assume free energy can be written as a function of correlation
length and box size. (dimensional analysis).

F =L f(L" HP") t=)1-T/T

e By differentiating we can find scaling of all other quantities

e Do runs in the neighborhood of T, with a range of system sizes.
e Exploit finite-size effects - don’t ignore them.

e Using scaled variables, put correlation functions on a common graph.

e How to scale the variables (exponent) depends on the transition in
question. Do we assume we know the exponent or do we calculate it?

Atomic Scale Simulation 17



Heuristic Arguments for Scaling

Scaling is revealed from the behavior of the correlation length.

With reduced temperature |t| =|(T-T,.)/T., why does E(T) ~ |t|¥ ?

« If (T) <<L, power law behavior is expected because the
correlations are local and do not exceed L.

« If §(T) ~L, then & cannot change appreciably and M(T) ~ [t/ is no
longer expected. power law behavior.

* For &(T) ~ L~|t[", a quantitative change occurs in the system.

Thus, |t| ~ |T-T (L)| ~ L', giving a scaling relation for T..

For 2-D square lattice, v=1. Thus, T (L) should scale as 1/L!
Extrapolating to L=co the T (L) obtained from the C (T).
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Correlation Length

e Near a phase transition a single length characterizes the
correlations

e The length diverges at the transition but is cutoff by the
size of the simulation cell.

e All curves will cross at T.; we use to determine T..
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Scaling example

e Magnetization of 2D Ising model
o After scaling data falls onto two curves
- above T, and Dbelow T..
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Magnetization probability

e How does magnetization vary across transition?

e And with the system size?

P_ (M)
<IM>
VigTX 717

0 M

P M)

st
J T

L ™ -

0 M

P, (M)

L finite

Vo
Myport =BT/ T,)

S S——

Te T

L (<M?>-<IMI>?)

Figure 3. Schematic variation of the probability distribution P (m) to find a
magnetization m in a finite system of linear dimension L from T >TetoT < T,
(left part) and the associated temperature variation of the average order parameter
< [m] >, “susceptibility” kpTx' = LY (< m?2 > ~ < [m| >2?) and reduced fourth
order cumulant Uz, = 1- < m* > / [3 < m? >2] (right part).
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F.(s)
121 ﬂ

Figure 2. Probability distribution P (s) of the magnetization s per spinof Lx L x L
subsystems of a simple cubic Ising lattice with N = 242 spins and periodic boundary
conditions for zero magnetic field and temperature kgT/J = 4.0 (note that the
critical temperature occurs at about kgT./J = 4.51[26].

21



Fourth-order moment

e Look at cumulants of the magnetization distribution
e Fourth order moment is the kurtosis (or bulging)
e When they change scaling that is determination of Tc.

e A Gaussian distribution has U,=0. what about the central
limit theorem?

Binder 4th-order Cumulant

] _ m— L=10 Fig. 4.5 Temperature
4 dependence of the
- O~ - .

< M 0.65 O\\\\D\ —o - L=20 fourth order cumulant
U — 1 _ U l\\i(:\\\\g\ o L=40 for L x L Ising square

4 2 4 1 \\-—\_.:_:\8 lattices with periodic

3 < M2 > 0.60 ) \\\'\\\. . boundary conditions.

. - O ""“l\\\
T~ l\\
o -

0.55 \O
| RN

050 T T T T T 4 1
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First-order transitions

Previous theory was for
second-order transitions

For first-order, there is no
divergence but hysteresis.
EXAMPLE: Change H in the
Ising model.

Surface effects dominate

(boundaries between the two
phases) and nucleation times

(metastablity).
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Fig. 4.6 Variation of
the magnetization in a
finite ferromagnet with
magnetic field A. The
curves include the
infinite lattice
behavior, the
equilibrium behavior
for a finite lattice, and
the behavior when the
system is only given
enough time to relax
to a metastable state.
From Binder and
Landau (1984).
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