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Phase transitions and  
finite-size scaling 

•  Critical slowing down and “cluster methods”. 
•  Theory of phase transitions/ “Renormalization Group” 
•  Finite-size scaling 
   
Detailed treatment: “Lectures on Phase Transitions and the 

Renormalization Group”  Nigel Goldenfeld (UIUC). 
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The Ising Model 
•  Suppose we have a lattice, with L2  lattice 

sites and connections between them. (e.g. 
a square lattice). 

•  On each lattice site, is a single spin 
variable: si = ±1. 

•  With mag. field h, energy is: 
 
•  J is the coupling between  

nearest neighbors (i,j) 
–  J>0 ferromagnetic 
–  J<0 antiferromagnetic. 

  

H = − hsi
i=1

N

∑ − Jsis j
( i, j )
∑

Z = e−βH

si =±1
∑
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Phase Diagram 
•  High temperature phase: spins are random 
•  Low temperature phase: spins are aligned 
•  A first-order transition occurs as H passes through zero 

for T<Tc. 
•  Similar to LJ phase diagram. (Magnetic field=pressure). 
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Local algorithms 
•  Simplest Metropolis: 

–  Tricks make it run faster.  
–  Tabulate exp(-E/kT) 
–  Do several flips each cycle by 

packing bits into a word. 

But,  
–  Critical slowing down ~ Tc. 
– At low T, accepted flips are rare       

--can speed up by sampling 
acceptance time. 

– At high T all flips are accepted  
--quasi-ergodic problem. 
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Critical slowing down 

•  Near the transition 
dynamics gets very slow if 
you use any local update 
method. 

•  The larger the system the 
less likely it is the the 
system can flip over. 

•  Free energy barrier  
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Dynamical Exponent 
Monte Carlo efficiency is 

governed by a critical 
dynamical exponent Z. 

  

ζ = var(O)τOtime/step( )−1

τO ∝ξ2 / D 

near Tc   ξ→ L  ⇒  τ → L2

τ ∝ Lz

Non-local updates reduce the  
exponent, allowing exploration of 
The “critical region.” 

  

With τO = correlation time

and ξ =  correlation length
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Swendsen-Wang algorithm  
Phys. Rev. Letts 58, 86 (1987). 

Little critical slowing down at the critical point. 

Non-local algorithm. 
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Correctness of cluster algorithm 
•  Cluster algorithm: 

–  Transform from spin space to bond space nij 

 (Fortuin-Kasteleyn transform of Potts model) 
–  Identify clusters: draw bond between 

 only like spins and those with p=1-exp(-2J/kT) 
–  Flip some of the clusters. 
–  Determine the new spins 
Example of embedding method: solve dynamics problem by 

enlarging the state space (spins and bonds). 
•  Two points to prove: 

–  Detailed balance 
–   joint probability: 
–  Ergodicity: we can go anywhere 

How can we extend to other models? 

  

Π σ ,n( ) = 1
Z

1− p( )δ ni , j
+ pδσ i−σ j

δ
ni , j−1

⎡
⎣⎢

⎤
⎦⎥i, j

∏
                                  p ≡ 1− e−2 J /kT

Trn Π σ ,n( ){ } = 1
Z

e
−2 J /kT δσ i−σ j

−1⎛
⎝

⎞
⎠

i , j
∑
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RNG Theory of phase transitions 
K. G. Wilson 1971 

•  Near to critical point  the spin is correlated over long 
distance; fluctuations of all scales 

•  Near Tc the system forgets most microscopic details. 
Only remaining details are dimensionality of space and 
the type of order parameter. 

•  Concepts and understanding are universal. Apply to all 
phase transitions of similar type. 

•  Concepts: Order parameter, correlation length, scaling.  

Atomic Scale Simulation 



10 

Observations 
What does experiment “see”? 
•  Critical points are temperatures (T), densities (ρ), etc., above which a parameter that 

describes long-range order, vanishes. 
–   e.g., spontaneous magnetization, M(T), of a ferromagnet is zero above Tc. 
–  The evidence for such increased correlations was manifest in critical 

opalescence observed in CO2 over a hundred years ago by Andrews.  
 As the critical point is approached from above, droplets of fluid acquire a size on the order 
of the wavelength of light, hence scattering light that can be seen with the naked eye!  

•  Define: Order Parameters that are non-zero below Tc and zero above it. 
–   e.g., M(T), of a ferromagnet or  ρL- ρG for a liquid-gas transition. 

•  Correlation Length ξ is distance over which state variables are correlated. 
Near a phase transition you observe:  

–  Increase density fluctuations, compressibility, and correlations (density-density, 
spin-spin, etc.). 

–  Bump in specific heat, caused by fluctuations in the energy C = V −V( )2
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      Blocking transformation 

  

Hnew = Kα
α
∑ Sα

S1 = σ i
i, j =nn
∑ σ j

S2 = σ i
i, j =nnn
∑ σ j

• Critical points are fixed points.  
 R(H*)=H*. 

• At a fixed point, pictures look the 
same! 

•  Add 4 spins together 
and make into one 
superspin flipping a 
coin to break ties. 

•  This maps H into a new 
H (with more long-
ranged interactions) 

•  R(Hn)=Hn+1 
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Renormalization Flow 

•  Hence there is a flow in H space. 
•  The fixed points are the critical points. 
•  Trivial fixed points are at T=0 and T=∞. 
•  Critical point is a non-trivial unstable fixed point. 
•  Derivatives of Hamiltonian near fixed point give exponents. 

See online notes for simple 
example of RNG equations for 
blocking the 2D Ising model 
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Universality 
•  Hamiltonians fall into a few general classes according to 

their dimensionality and the symmetry (or dimensionality) 
of the order parameter. 

•  Near the critical point, an Ising model behaves exactly the 
same as a classical liquid-gas. It forgets the original H, but 
only remembers conserved things. 

•  Exponents, scaling functions are universal 
•  Tc Pc, … are not (they are dimension-full). 
•  Pick the most convenient model to calculate exponents 
•  The blocking rule doesn’t matter. 
•  MCRG:  Find temperature such that correlation functions, 

blocked n and n+1 times are the same. This will determine 
Tc and exponents. 

 
G. S. Pawley et al., Phys. Rev. B 29, 4030 (1984). 
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Scaling is an important feature of 
phase transitions 

In fluids,  
•  A single (universal) curve is found plotting    T/Tc  vs. ρ/ρc .  
•  A fit to curve reveals that ρc ~ |t|β   (β=0.33). 

–  with reduced temperature |t| =|(T-Tc)/Tc| 
–  For percolation phenomena, |t| à |p|=|(p-pc)/pc| 

•  Generally, 0.33 ≤ β ≤ 0.37, e.g., for liquid Helium β = 0.354. 
 
A similar feature is found for other quantities, e.g., in magnetism: 
•  Magnetization:  M(T) ~ |t|β     with 0.33 ≤ β ≤ 0.37. 
•  Magnetic Susceptibility: χ(T) ~ |t|-γ    with 1.3 ≤ γ ≤ 1.4.  
•  Correlation Length: ξ(T) ~ |t|-ν        where ν depends on dimension. 
•  Specific Heat (zero-field): C(T) ~ |t|- α  where α ~ 0.1  

β, γ, ν, and α are called critical exponents. 
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Exponents 

  

ξ = t−ν M = tβ

χ = t−γ C = t−α

t ≡ T
Tc

−1

M 

χ 

UL 

ln |M| 

ln M2 
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Primer for Finite-Size Scaling: 
Homogeneous Functions 

•  Function f(r) “scales” if for all values of λ, 

If we know function at f(r=r0), then we know it everywhere! 
 
•  The scaling function is not arbitrary; it must be g(λ)=λP, 

p=degree of homogeneity. 

•  A generalized homogeneous function is given by (since you can 
always rescale by λ-P with a’=a/P and b’=b/P) 

f (λr) = g(λ) f (r)

e.g., f (r) = Br2 → f (λr) = λ2 f (r)→ g(λ) = λ2

f (λax,λby) = λ f (x, y)

The static scaling hypothesis asserts that G(t,H), the Gibbs 
free energy, is a homogeneous function. 
•  Critical exponents are obtained by differentiation, e.g. M=-dG/dH 
λaH M (λat t,λaH H ) = λM (t,H ) at H = 0, M (t,0) = λaH −1M (λat t,0)

Atomic Scale Simulation 



17 

Finite-Size Scaling 
•  General technique-not just for the Ising model, but for other 

continuous transitions. 
•  Used to: 

–  Prove existence of phase transition 
–  Find exponents 
–  Determine Tc etc.  

•  Assume free energy can be written as a function of correlation 
length and box size. (dimensional analysis). 

  FN = Lγ f tL1/ν , HLβδ /ν( )    t ≡ 1−T / Tc

•  By differentiating we can find scaling of all other quantities 
•  Do runs in the neighborhood of Tc with a range of system sizes.  
•  Exploit finite-size effects - don’t ignore them. 
•  Using scaled variables, put correlation functions on a common graph. 
•  How to scale the variables (exponent) depends on the transition in 
question. Do we assume we know the exponent or do we calculate it? 
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Heuristic Arguments for Scaling 

With reduced temperature |t| =|(T-Tc)/Tc|,   why does ξ(T) ~ |t|-ν  ? 

•   If  ξ(T) << L, power law behavior is expected because the 
correlations are local and do not exceed L. 

•   If  ξ(T) ~ L, then ξ cannot change appreciably and M(T) ~ |t|β is no 
longer expected. power law behavior. 

•  For  ξ(T) ~ L~|t|-ν, a quantitative change occurs in the system.  

Scaling is revealed from the behavior of the correlation length. 

Thus, |t| ~ |T-Tc(L)| ~ L-1/ν, giving a scaling relation for Tc. 

For 2-D square lattice, ν=1. Thus, Tc(L) should scale as 1/L! 
Extrapolating to L=∞ the Tc(L) obtained from the Cv(T). 
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Correlation Length 
•  Near a phase transition a single length characterizes the 

correlations 
•  The length diverges at the transition but is cutoff by the 

size of the simulation cell. 
•  All curves will cross at Tc; we use to determine Tc. 
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Scaling example 
•  Magnetization of 2D Ising model 
•  After scaling data falls onto two curves 

–  above Tc    and    below Tc. 
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Magnetization probability 
•  How does magnetization vary across transition? 
•  And with the system size? 
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Fourth-order moment 
•  Look at cumulants of the magnetization distribution 
•  Fourth order moment is the kurtosis (or bulging) 
•  When they change scaling that is determination of Tc. 
•  A Gaussian distribution has U4=0.  what about the central 

limit theorem? 

  

U4 = 1−
M 4

3 M 2 2

Tc 

Binder 4th-order Cumulant 
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First-order transitions 

•  Previous theory was for 
second-order transitions 

•  For first-order, there is no 
divergence but hysteresis. 
 EXAMPLE: Change H in the 
Ising model. 

•  Surface effects dominate 
(boundaries between the two 
phases) and nucleation times 
(metastablity). 
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