Interatomic Potentials

 Before we can start a simulation, we need the model!

 Interaction between atoms and molecules is determined by

quantum mechanics:
— Schrodinger Equation + Born-Oppenheimer approximation
— BO: we can get rid of electrons and consider the effective interaction
of nuclei — the “potential energy surface”, V(R).
V(R) determines the quality of result.

« But we don’ t know V(R)!

— Semi-empirical approach: make a good guess and use experimental data to
adjust it. (Evaluation is fast! But difficult to get accurate potential.)

— Quantum chemistry approach: compute the surface at a few points and fit to a
reasonable form. (This is hard!)

— Ab initio approach: do the QM calculations “on the fly” as the trajectory is

being generated. Couple a quantum calculation of the electrons with a classical
one of the nuclei. (Much more computer effort, but no analytic form needed.)
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The electronic-structure problem

The non-relativistic Hamiltonian for a collection of 1ons and electrons:

H=-3 v, 3
i=l

l<] l]

+ symmetry and boundary conditions

“ Atomic units”: h=m,=e=1
Energy in Hartrees=27.2¢V=316,000K Lengths in Bohr radii= 0.529 A =5.29 x10“cm

2 V2 + ! > 4 2 — Z— + 2 + external fields

- a12(M/m) <= r r r

i,a "ig i<j 'jj

+symmetry and boundary conditions

Accuracy needed to address questions at room temp.: 100 K=0.3 mHa=0.01eV.
MANY DECIMAL PLACES! Solving this is difficult!
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Born-Oppenheimer (1927) Approximation
« Make use of the fact that nuclei are so much heavier than electrons.
— Worse case: proton mass= 1836 electron mass. Electrons move much faster!
« Factor total wavefunction into ionic and electronic parts. (adiabatic approx)

H=H +H, electronic and  nuclear parts

H=-3 1 S T H=3_1 v
AR R) r \ voEAM, )

a<b ia i<j

Y| R)=y(r|R)O(R) variational trial function

Hy(r|R)=E, (Ry(r|R) E, (R) = BO energy surface

(Hy+Eyo(R))$(R)=E, 9(R) 312

error(E, )= 0[2) electronic energy <10~ Ha
m[

*Eliminate the electrons and replace by an effective potential.
*Does not require classical ions (but MD assumes it) (see end of course)
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Semi-empirical potentials

» Assume a functional form, e.g., a 2-body or 3-body.
 Find some data from experiment.
 Use theory+simulation to determine parameters.

e  What data?

Molecular bond lengths, binding energies
Atom-atom scattering in gas phase
Virial coefficients, transport in gas phase

Low temperature properties of the solid, cohesive energy, lattice constant,
elastic moduli, vibrational frequencies, defect energies.

Melting temperature, critical point, triple point, surface tension,....
Point defects, surface energies, diffusion barriers
Liquid structure

« GIGO,i.e. “garbage in, garbage out’!

« Interpolation versus extrapolation: “transferability”
e Are results predictive?
 How much theory to use, and how much experimental data?
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Atom-Atom potentials

V(R)=Yw(r—r)

i<j

e Total potential 1s the sum of atom-atom pair potentials

« Assumes molecules are rigid, in non-degenerate ground
states. Interactions are weak so the internal structure 1s
weakly affected by the environment.

* Geometry (steric effects) are important.
« Short-range effects-repulsion caused by cores: exp(-r/c)

* Perturbation theory as r;;>> core radius
— Electrostatic effects: do a multipole expansion (if charged or have dipoles).
— Induction effects (by a charge on a neutral atom).
— Dispersion effects: dipole-induced-dipole (C,/r%)
C, = jdwaA(w)aB(w)
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Atomic systems

* Neutral rare gas atoms are the simplest atoms to find a
potential for: attractive spheres.
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Repulsion at short distances because of overlap of atomic cores.

Attraction at long distance do to the dipole-induced-dipole force.
Dispersion interaction is c,r® + cgrs +....

He-He interaction is the most accurate. Use all available low density
data (virial coefficients, quantum chemistry calculations, transport
coefficients, ....) Good to better than 0.1K (e.g. Aziz potentials). But
that system needs quantum simulations. Three-body (and many-
body) interactions are small but not zero.

Good potentials are also available for other rare gas atoms.

Low density H, 1s almost like rare gas because angular degrees of
freedom average out due to quantum effects. But H, has a much
larger polarizability.



Lennard-Jones (2-body) potential

VIR)=Yw(r—-r )  v(r)=4e

i<j

* Good model for non-bonded rare gas atoms
* Standard model for MD!

Why these exponents: 6 and 12?
* There is only 1 LJ system!

v(x)=4 (x'l2 —x° )

*Reduced units:

—Energy in &: T'=kgT/ ¢

—Lengths ino : x=r/ o

—Time 1s mass units, pressure, density,..
See references on FS pgs. 51-54
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Fig. 1.3 Argon pair potentials. We illustrate the BBMS pair potential for argon (solid line)
[Maitland and Smith 1971]. The BFW potential [Barker et al. 1971] is numerically very similar.
Also shown is the Lennard-Jones 12-6 effective pair potential (dashed line) used in computer
simulations of liquid argon.



Phase diagram of Lennard-Jones
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Flgure 3: Phase diagram of the Lennard-Jones fluid: Reduced tem-
perature as the function of the reduced density. The dashed line cor-
responds to the liquid-vapour coexistence line and the solid ones to
solid-liquid and solid-vapour coexistence.

A. Bizjak, T.Urb1i and V. Vlachy Acta Chim. Slov. 56, 166—171 (2009)
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Tabele I: Comparison between the our theoretical results, simula-
tions'®'” and experimental data.** The Lennard-Jones parameters

for noble gases were taken from Re

I; P P. I; P
theory 1.35 0.16 0.30 0.80 0.0086
simulation 1.31 0.12 0.30 0.68 0.001
neon 1.27 0.12 0.31 0.70 0.0019
argon 1.26 0.12 0.32 0.70 0.0016
krypton 1.22 0.11 0.30 0.68 0.0015
xenon 1.31 0.13 0.35 0.73 0.0018




Comparison with experiment for rare gas

Table 5.2 Calculated and experimental properties of the rare gas solids.

Parameters taken from [15]

solids

3.3 rdir pulttnuans

Ne Ar Kr Xe
ro (A) Experiment 3.13 3.75 3.99 4.33
Theory 2.99 3.71 3.98 4.34
u, (eV/atom) Experiment —-0.02 —0.08 —0.11 —-0.17
Theory —0.027 —0.089 —0.120 —-0.172
B, (GPa) Experiment 1.1 2.7 35 3.6
Theory 1.8 3.2 35 3.8
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LJ Force Computation

I Loop over all pairs of atoms.
do 1=2,natoms
do j=1,i-1
'Compute distance between i and j.
2=0

do k=1,ndim
dx(k) = r(k,i) - r(k,j)
IPeriodic boundary conditions.
if(dx(k).gt. ell2(k)) dx(k) = dx(k)-ell(k)
if(dx(k).It.-ell2(k)) dx(k) = dx(k)+ell(k)
r2 =12 + dx(k)*dx(k)
enddo

'Only compute for pairs inside radial cutoff.
if(r2.1t.rcut2) then

r2i=sigma2/r2

r61=r21*r21*r2i
IShifted Lennard-Jones potential.

pot = pot+eps4*r6i*(r6i-1)- potcut
'Radial force.

rforce = eps24*r61*r21*(2*r61-1)

dok=1,ndim
force(k,1)=force(k,1) + rforce*dx(k)
force(k,j)=force(k,)) - rforce*dx(k)
enddo
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endif
enddo
enddo
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[Lennard-Jones force calculation

for 1 in range(Natoms):
for j in range(i+1,Natoms):
dx=x[1]-x[j] # this will be a vector if x&y are array
for d in range(3): # more clever ways to do this?
if dx[d]>L[d]/2: dx[d] -= L[d]
if dx[d]<-L[d]/2: dx[d] += L[d]
r2 = sum(dx*dx) # dx[0]*dx[0]+dx[1]*dx[1]+dx[2]*dx[2]
if r2>rcutoff2: continue # outside of cutoff distance”2
121 = sigma/r2
r61 = 1r21%*3
pot += eps4*r61*(r61-1) - potcut
rforce = eps24*r61*r21*(2*r61-1)
F[i] = F[1] + rforce*dx # F[1] and dx are vectors!
F[j] = F[j] - rforce*dx

Note number of times through loops over atoms
Pair potential ~N? iterations; reduce to ~N using neighbor
tables.
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Morse potential

V(V) _ g[e—2a(r—r0) _ Ze—a(r—ro)]

* Like Lennard-Jones but for bonded atoms

« Repulsion is more realistic - but attraction less so.

* Minimum at r,,, at approximately the neighbor position.
e Minimum energy is €.

 Has an extra parameter “a_ that can be used to fit a third
property: lattice constant (r, ), bulk modulus (B) and

2
aVly, av

dr o
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Morse potential: parameters

Metal ado B L(ev) X1072 qa=A"1 ro=A D(ev)
Pb 2.921 83.02 7.073 1.1836  3.733 0.2348
Ag 2.788 71.17 10.012 1.3690 3.115 0.3323
Ni 2.500 51.78 12.667 1.4199  2.780 0.4205
Cu 2.450 49.11 10.330 1.3588 2.866 0.3429
Al 2.347 44.17 8.144 1.1646  3.253 0.2703
Ca 2.238 39.63 4.888 0.80535 4.569 0.1623
Sr 2.238 39.63 4.557 0.73776 4.988 0.1513
Mo 2.368 88.91 24.197 1.5079 2976 0.8032
"\ 2.225 72.19 29.843 14116 3.032 0.9906
Cr 2.260 75.92 13.297 1.5721  2.754 0.4414
Fe 1.988 51.97 12.573 1.3885 2.845 04174
Ba 1.650 34.12 4.266 0.65698 5.373 0.1416
K 1.293 23.80 1.634 0.49767 6.369 0.05424
Na 1.267 23.28 1.908 0.58993 5.336 0.06334
Cs 1.260 23.14 1.351 0.41569 7.557 0.04485
Rb 1.206 22.15 1.399 0.42981 7.207 0.04644

L. A. Girifalco and V. G. Weizer, Application of the Morse potential

function to cubic metals. Phys. Rev. 114, 687 (1959).
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Fit for a Born potential

Zl,Z . A *Attractive charge-charge
V(lf') = / + — interaction
n
r r *Repulsive interaction determined

by atom core.
EXAMPLE: NaCl

« Z.=%1 on simple cubic structure/alternating charges
« Use cohesive energy and lattice constant (at T=0) to determine A and n
e eAd dE e, neAd

E =-4%4+-1— B — —
B d dn dd d2 dn+1

-2 n=8.87 A=1500eV3¥’

« Now we need a check, say, the “bulk modulus”.
— We get 4.35 x 10! dy/cm? Experiment = 2.52 x 10! dy/cm?

* You get what you fit for! Other properties might be wrong.
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(a)

(©

Various Other Empirical Potentials

v(r)

o -

v(r)

r

(b)

(d)

"0 a) Hard sphere -

simplest, first, no integration error
01~ using a specialized algorithm.
T b) Hard sphere, square well

v(r)

c) Coulomb (long-ranged), We
will discuss later.

d) 1/r'* potential (short-ranged)

-

Fig. _1.4 Idealized pair potentials. (a) The hard-sphere potential; (b) The square-well
potential; (c) The soft-sphere potential with repulsion parameter v = 1; (d) The soft-sphere

potential with repulsion parameter v = 12,

9/11/18

16



Arbitrary Pair Potential

For anything more complicated than a LLJ 6-12 potential
you can use a table-driven method.

In start up of MD, compute or read in a table of potential
values. You need to provide a table of V(r) & dV(r)/dr.

During computation, map interatomic distance to a grid
and compute grid index and difference.

Do table look-up and compute a (cubic) polynomial.
Complexity 1s a memory fetch and a few flops/pair

Advantage: Code is completely general-can handle any
potential at the same cost.

Disadvantage: some cost for memory fetch. Possible
cache misses.
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Failure of pair potentials

« E_=cohesive energy

« T =melting temperature

+ (C,, and C,, are shear elastic constants.

— A “Cauchy” relation makes them equal in a cubic lattice for any pair

potential.

 Problem in metals: electrons are not localized!

After Ercolessi, 1997
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Property Cu |Ag Pt Au LJ

EJ/T,, 30 |28 33 33 13

E /E, 0.33 10.36 0.26 0.25 1

C,,/Cyy 1.5 | 1.9 3.3 3.7 1.000
and E =vacancy formation energy
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Metallic potentials (EAM)

Have a inner core + valence electrons
Valence electrons are delocalized.

— Hence pair potentials do not work very well. Strength of bonds decreases as
density increases because of the Pauli principle.

does E o</ orE o \/E for Z =coordination number ?

EXAMPLE: at a surface LJ potential predicts expansion but metals contract.
Embedded Atom Model (EAM) or glue models work better.
Daw and Baskes, Phys. Rev. B 29, 6443 (1984).

Use electron density as a fundamental parameter.

V(R)= Y, F(n)+ X, 00,) n=p(,)

atoms pairs

Three functions to optimize!

Good for spherically symmetric atoms such as Cu, Pb.

— Not for metals with covalent bonds or metals (Al) with large changes in charge
density under shear.

9/11/18 19



Embedded-atom potential

Idea:

* Energy of an atom depends non-linearly on the surrounding atoms (number
and distance)

* Use electron density as a measure of the surrounding atoms

Econ = ZFi(Pz‘) +%ZZV(RU)

i i
Embedding energy Pair potential
pi =Y _ f(Rij)
i#]

o0
Lo
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Accuracy of Embedded Atom Potentials

Linear thermal expansion Activation energy for self-
in units of 10°5/K

diffusion in eV

Element EAM Experiment EAM Experiment
Cu 16.4 16.7 2.02 2.07
Ag 21.1 19.2 1.74 1.78
Au 12.9 14.1 1.69 1.74
Ni 14.1 12.7 2.81 2.88
Pd 10.9 11.5 2.41 < 2.76
Pt 7.8 8.95 2.63 2.66

9/11/18
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Accuracy of Embedded Atom Potentials

e Phonon dispersion for fcc Ni

. Import|ance of checking the
accuracy of empirical potential
models

e The NRL potential is very
accurate while the Voter&Chen
potential overestimates the
frequencies
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Modified Embedded Atom Method

eSimilar form to EAM with modified density function

Econ = ZFz(l)z) +%ZZV(R23)

)
W
Embedding energy Pair potential

Pi = Z f(Rij) - f(Rir) - g(cos Oji)
j.k

e Angular force terms particularly important for early transition metal
elements and covalent bonded systems
e Applications of EAM to Si, Ti and refractory metals



Silicon potential

« Solid silicon cannot be described with a pair potential.

« Has open structure, with coordination 4!

« Tetrahedral bonding structure caused by the partially filled p-shell.

* Very stiff potential, short-ranged caused by localized electrons.

» Stillinger-Weber (Phys. Rev. B 31, 5262, 1985) potential 1s fit from:

lattice constant, cohesive energy, melting point, structure of liquid Si.

4 1/(r—a
VQZ(B/V — A)e (= for r<a
/(r.—a /(r., —a
v= Y Ae” T cos(0) +1/ 3]
ijk

 Minimum at 109° r. 0
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Hydrocarbon potential

« Empirical potentials to describe intra-
molecular and inter-molecular forces

 AMBER potential is:

Two-body Lennard-Jones+ charge interaction
(non-bonded)

Bonding potential: k (r;-r;)?

Bond angle potential k(8- 0,)

Dihedral angle: v [ 1 - cos(no)]

All parameters taken from experiment.

Rules to decide when to use which parameter.

 Several “force fields " available

open source or commercial.
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Fig. 1.8 (a) A model of butane [Ryckaert and Bellemans 1975]. (b) The torsional

[Marechal and Ryckaert 1983].
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More potentials for organic molecules

eDistinguish between bonded and non-bonded interactions

(1) Ethane H3C-CHs
- Torsion of C-C bond
- Staggered versus eclipsed configuration
has different energy
- Requires four-body potential Virsion = K - cos(360)

(2) Ethene H2C=CH2
- Double bond between C=C has different strength
than single bond C-C in ethane
- Requires cluster functional or different potentials
for sp, sp?, and sp? carbon

eChanges in coordination are done by changing the potential
eExamples: AMBER, CHARMM, MM3
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Water potentials

Older potentials: BNS,MCY,ST2

New ones: TIP3P,SPC,TIP4P Mahoney & Jorgensen
TIP5P J. Chem. Phys., Vol. 112, No. 20, 22 May 2000

— Rigid molecule with 5 sites

— Oxygen in center that interacts with
other oxygens using LJ 6-12

— 4 charges (e = £0.24) around it so it
has a dipole moment

Compare with phase diagram (melting
and freezing), pair correlations, N \
dielectric constant. b

But protons need a quantum
description! FIG. 1. TIPSP monomer geometry.
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Potentials for Charged Systems

Start with pair potentials with Coulomb interactions
*Buckingham plus electrostatic Coulomb term

V(r) = Ae /B + g— Cr—*

Include polarization of ions

*Electric field from other 1ons induces a dipole moment
*Shell model

-Describe the ion core and the electron shell

separately as two particles connected by a spring

- Spring constant between core and shell

corresponds to polarizability
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Problems with potentials

The interaction 1s high dimensional function. It arises from
quantum electronic effects so it 1s not a simple function.

Procedure: fit data relevant to the system you are going to
simulate: similar densities and local environment.

Use other experiments to test the potential.

Do quantum chemical (SCF or DFT) calculations of
snapshots. Be aware that these may not be accurate
enough.

No empirical potentials work very well in an
inhomogenous environment.

This 1s the main problem with atom-scale simulations--
they really are only suggestive since the potential may not
be correct. Universality helps: sometimes the fine details
of the potential are not important.
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Summary of semi-empirical potentials

Semi- Ionic Bio- Organic

conductors| materials Polymers materials | materials Dimers

Potentials Metals

Lennard Jones

Buckingham

Morse

Embedded
Atom

Modified
embedded
atom

Stillinger-
Weber

Amber

Charmm

MM3

Buckingham +
Coulomb

Shell potentials




Which potential to use?

* Type of systems: metallic, covalent, 1onic, van der Waals
« Desired accuracy: quantitative or qualitative

« Transferability: many different environments

« Efficiency: system size and computer resources

— (10 atoms or 10%atoms. 100fs or 10 ms)

Total error is the combination of:
— statistical error (the number of time steps)

— systematic error (the potential)

« (Can we use machine learning or neural network 1deas to

generate better semi-empirical potentials? Get lots of data

from quantum calculations of snapshots and let the
computer figure out the potential.
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