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Interatomic Potentials 

•  Before we can start a simulation, we need the model!  
•  Interaction between atoms and molecules is determined by 

quantum mechanics: 
–  Schrödinger Equation  +  Born-Oppenheimer approximation 
–  BO: we can get rid of electrons and consider the effective interaction 

of nuclei – the “potential energy surface”, V(R).  
   V(R) determines the quality of result. 

•  But we don’t know V(R)! 
–  Semi-empirical approach: make a good guess and use experimental data to 

adjust it. (Evaluation is fast! But difficult to get accurate potential.) 
–  Quantum chemistry approach: compute the surface at a few points and fit to a 

reasonable form. (This is hard!) 
–  Ab initio approach: do the QM calculations “on the fly” as the trajectory is 

being generated. Couple a quantum calculation of the electrons with a classical 
one of the nuclei. (Much more computer effort, but no analytic form needed.) 
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The electronic-structure problem 

The non-relativistic Hamiltonian for a collection of ions and electrons: 
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Accuracy needed to address questions at room temp.: 100 K=0.3 mHa=0.01eV.    
MANY DECIMAL PLACES!  Solving this is difficult! 

“Atomic units”:  
Energy in Hartrees=27.2eV=316,000K    Lengths in Bohr radii= 0.529 A = 5.29 x10-9cm 
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Born-Oppenheimer (1927) Approximation 
•  Make use of the fact that nuclei are so much heavier than electrons.   

–  Worse case: proton mass= 1836 electron mass. Electrons move much faster! 
•  Factor total wavefunction into ionic and electronic parts. (adiabatic approx) 
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Ψ(r | R) =ψ (r | R)φ(R) variational trial function
Heψ (r | R) = EBO (R)ψ (r | R)      EBO R( ) = BO energy surface

HN + EBO (R)( )φ(R) = Etotφ(R)

• Eliminate the electrons and replace by an effective potential. 
• Does not require classical ions  (but MD assumes it) (see end of course) 
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Semi-empirical potentials 

•  What data?  

–  Molecular bond lengths, binding energies 
–  Atom-atom scattering in gas phase 
–  Virial coefficients, transport in gas phase 
–  Low temperature properties of the solid, cohesive energy, lattice constant, 

elastic moduli, vibrational frequencies, defect energies. 
–  Melting temperature, critical point, triple point, surface tension,…. 
–  Point defects, surface energies, diffusion barriers 
–  Liquid structure 

•  GIGO, i.e. “garbage in, garbage out”! 
•  Interpolation versus extrapolation: “transferability” 
•  Are results predictive? 
•  How much theory to use, and how much experimental data? 

•  Assume a functional form, e.g., a 2-body or 3-body. 
•  Find some data from experiment. 
•  Use theory+simulation to determine parameters. 
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Atom-Atom potentials 

•  Total potential is the sum of atom-atom pair potentials 
•  Assumes molecules are rigid, in non-degenerate ground 

states. Interactions are weak so the internal structure is 
weakly affected by the environment.  

•  Geometry (steric effects) are important.  
•  Short-range effects-repulsion caused by cores:  exp(-r/c) 
•  Perturbation theory as rij >> core radius 

–  Electrostatic effects: do a multipole expansion (if charged or have dipoles). 
–  Induction effects (by a charge on a neutral atom). 
–  Dispersion effects: dipole-induced-dipole  (C6/r6) 

  
V (R) = v(| ri

i< j
∑ − rj |)

  
C6 = dω∫ α A(ω )α B(ω )
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Atomic systems 
•  Neutral rare gas atoms are the simplest atoms to find a 

potential for: attractive spheres. 
–  Repulsion at short distances because of overlap of atomic cores. 
–  Attraction at long distance do to the dipole-induced-dipole force.  

Dispersion interaction is c6r-6  + c8 r-8 + …. 

–  He-He interaction is the most accurate. Use all available low density 
data (virial coefficients, quantum chemistry calculations, transport 
coefficients, ….) Good to better than 0.1K (e.g. Aziz potentials). But 
that system needs quantum simulations. Three-body (and many-
body) interactions are small but not zero. 

–  Good potentials are also available for other rare gas atoms. 
–  Low density H2 is almost like rare gas because angular degrees of 

freedom average out due to quantum effects. But H2 has a much 
larger polarizability. 
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Lennard-Jones (2-body) potential  

ε~ minimum 
σ= wall of potential 

v(x) = 4 x-12 − x−6( )
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•  Good model for non-bonded rare gas atoms  
•  Standard model for MD! 
 
Why these exponents:  6 and 12?  
•   There is only 1 LJ system!  
 
 
• Reduced units: 
– Energy in ε:  T*=kBT/ ε 
– Lengths in σ : x=r/ σ 
– Time is mass units, pressure, density,.. 

See references on FS pgs. 51-54  

ε 

σ 
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Phase diagram of Lennard-Jones 
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A. Bizjak, T.Urbi and V. Vlachy Acta Chim. Slov. 56, 166–171 (2009) 



Comparison with experiment for rare gas 
solids 
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! Loop over all pairs of atoms. 
        do i=2,natoms 
           do j=1,i-1 
!Compute distance between i and j. 
              r2 = 0 

 do k=1,ndim 
                 dx(k) = r(k,i) - r(k,j) 
!Periodic boundary conditions. 
              if(dx(k).gt. ell2(k)) dx(k) = dx(k)-ell(k) 
              if(dx(k).lt.-ell2(k)) dx(k) = dx(k)+ell(k) 
                 r2 = r2 + dx(k)*dx(k) 
        enddo 
 

!Only compute for pairs inside radial cutoff. 
              if(r2.lt.rcut2) then 
                 r2i=sigma2/r2 
                 r6i=r2i*r2i*r2i 
!Shifted Lennard-Jones potential. 
                 pot = pot+eps4*r6i*(r6i-1)- potcut 
!Radial force. 
                 rforce = eps24*r6i*r2i*(2*r6i-1) 
                 do k = 1 , ndim 
                    force(k,i)=force(k,i) + rforce*dx(k) 
                    force(k,j)=force(k,j) - rforce*dx(k) 
                 enddo 
              endif 
           enddo 
        enddo 

LJ Force Computation 
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Lennard-Jones force calculation 

9/11/18 12 

for i in range(Natoms): 
      for j in range(i+1,Natoms): 

 dx=x[i]-x[j]  # this will be a vector if x&y are array 
 for d in range(3):  # more clever ways to do this? 
  if dx[d]>L[d]/2: dx[d] -= L[d] 
  if dx[d]<-L[d]/2: dx[d] += L[d] 
 r2 = sum(dx*dx)  # dx[0]*dx[0]+dx[1]*dx[1]+dx[2]*dx[2] 
 if r2>rcutoff2: continue  # outside of cutoff distance^2 
 r2i = sigma/r2 
 r6i = r2i**3 
 pot += eps4*r6i*(r6i-1) - potcut 
 rforce = eps24*r6i*r2i*(2*r6i-1) 
 F[i] = F[i] + rforce*dx # F[i] and dx are vectors! 
 F[j] = F[j] - rforce*dx 

 
Note number of times through loops over atoms 
Pair potential ~N2 iterations; reduce to ~N using neighbor 
tables. 
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Morse potential 

•  Like Lennard-Jones but for bonded atoms 
•  Repulsion is more realistic - but attraction less so. 
•  Minimum at r0 , at approximately the neighbor position. 
•  Minimum energy is ε. 
•  Has an extra parameter “a” that can be used to fit a third 

property:  lattice constant (r0 ), bulk modulus (B) and cohesive 
energy. 

  v(r) = ε[e−2a(r−r0 ) − 2e−a(r−r0 ) ]

 

dE
dr r0

= 0 B = −V dP
dV V0

=V d
2E

dV 2 V0
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Fit for a Born potential 

EXAMPLE:   NaCl 
•  Zi = ±1   on simple cubic structure/alternating charges 
•  Use cohesive energy and lattice constant (at T=0) to determine A and n 

  
v(r) =

ZiZ j

r
+

A
rn

• Attractive charge-charge 
interaction 
• Repulsive interaction determined 
by atom core. 
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•  Now we need a check, say, the “bulk modulus”.   
–  We get 4.35 x 1011 dy/cm2  Experiment = 2.52 x 1011 dy/cm2  

•  You get what you fit for!  Other properties might be wrong. 

à n=8.87   A=1500eV8.87 
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a)  Hard sphere -  
 simplest, first, no integration error 
using a specialized algorithm. 

b) Hard sphere, square well 

 

 

c) Coulomb (long-ranged), We 
will discuss later. 

d) 1/r12  potential (short-ranged) 

Various Other Empirical Potentials 
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Arbitrary Pair Potential 
•  For anything more complicated than a LJ 6-12 potential 

you can use a table-driven method. 
•  In start up of MD, compute or read in a table of potential 

values.  You need to provide a table of   V(r) & dV(r)/dr. 
•  During computation, map interatomic distance to a grid 

and compute grid index and difference. 
•  Do table look-up and compute a (cubic)  polynomial.   
•  Complexity is a memory fetch and a few flops/pair 
•  Advantage: Code is completely general-can handle any 

potential at the same cost. 
•  Disadvantage: some cost for memory fetch. Possible 

cache misses. 
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Failure of pair potentials 

•  Ec=cohesive energy  and  Ev=vacancy formation energy 
•  Tm=melting temperature 
 
•  C12 and C44 are shear elastic constants.  

–  A “Cauchy” relation makes them equal in a cubic lattice for any pair 
potential. 

•  Problem in metals: electrons are not localized! 
After Ercolessi, 1997 

Property Cu Ag Pt Au LJ 

Ec/Tm 30 28 33 33 13 

Ev/Ec 0.33 0.36 0.26 0.25 1 

C12/C44 1.5 1.9 3.3 3.7 1.000 
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Metallic potentials (EAM) 
•  Have a inner core + valence electrons 
•  Valence electrons are delocalized.  

–  Hence pair potentials do not work very well. Strength of bonds decreases as 
density increases because of the Pauli principle. 

•  EXAMPLE: at a surface LJ potential predicts expansion but metals contract.  
•  Embedded Atom Model (EAM) or glue models work better. 

Daw and Baskes, Phys. Rev. B 29, 6443 (1984). 
•  Use electron density as a fundamental parameter. 

 
•  Three functions to optimize! 
•  Good for spherically symmetric atoms such as Cu, Pb.  

–  Not for metals with covalent bonds or metals (Al) with large changes in charge 
density under shear. 

  
V (R) = F(ni

atoms
∑ ) + φ

pairs
∑ (rij )     ni = ρ rij( )

j
∑

does    or   for    Z coordination number ?E Z E Z∝ ∝ =

9/11/18 



9/11/18 20 



9/11/18 21 



9/11/18 22 



9/11/18 23 



24 

Silicon potential 

•  Solid silicon cannot be described with a pair potential. 
•  Has open structure, with coordination 4! 
•  Tetrahedral bonding structure caused by the partially filled p-shell. 
•  Very stiff potential, short-ranged caused by localized electrons. 
•  Stillinger-Weber (Phys. Rev. B 31, 5262, 1985) potential is fit from: 

lattice constant, cohesive energy, melting point, structure of liquid Si. 
 

      for r<a 
 
 
 

•  Minimum at 109o 

  v2 = (B / r4 − A)e1/(r−a)

  
v3 = λ

i, j ,k
∑ eγ / (rij −a)+γ / (rik −a)[cos(θi ) +1 / 3]2

ri 

rk 
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Hydrocarbon potential 
•  Empirical potentials to describe intra- 

molecular and inter-molecular forces 
•  AMBER potential is: 

–  Two-body Lennard-Jones+ charge interaction 
(non-bonded) 

–  Bonding potential:   kr(ri-rj)2 
–  Bond angle potential  ka(θ- θ0)2 

–  Dihedral angle:  vn[ 1 - cos(nφ)] 
–  All parameters taken from experiment.  
–  Rules to decide when to use which parameter. 

•  Several “force fields” available  
–  open source or  commercial.  
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Water potentials 
•  Older potentials: BNS,MCY,ST2 
•  New ones: TIP3P,SPC,TIP4P 
•  TIP5P 

–  Rigid molecule with 5 sites 
–  Oxygen in center that interacts with 

other oxygens using LJ 6-12 
–  4 charges (e = ±0.24) around it so it 

has a dipole moment 
•  Compare with phase diagram (melting 

and freezing), pair correlations, 
dielectric constant. 

•  But protons need a quantum 
description! 

Mahoney & Jorgensen 
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Potentials for Charged Systems 
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Problems with potentials 
•  The interaction is high dimensional function. It arises from 

quantum electronic effects so it is not a simple function. 
•  Procedure: fit data relevant to the system you are going to 

simulate:  similar densities and local environment. 
•  Use other experiments to test the potential.  
•  Do quantum chemical (SCF or DFT) calculations of 

snapshots. Be aware that these may not be accurate 
enough. 

•  No empirical potentials work very well in an 
inhomogenous environment. 

•  This is the main problem with atom-scale simulations--
they really are only suggestive since the potential may not 
be correct. Universality  helps: sometimes the fine details 
of the potential are not important. 
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Which potential to use? 

•  Type of systems: metallic, covalent, ionic, van der Waals 
•  Desired accuracy: quantitative or qualitative 
•  Transferability: many different environments 
•  Efficiency: system size and computer resources  

–  (10 atoms or 108atoms.   100fs or 10 ms) 

Total error is the combination of: 
–  statistical error (the number of time steps) 
–  systematic error (the potential) 

•  Can we use machine learning or neural network ideas to 
generate better semi-empirical potentials?  Get lots of data 
from quantum calculations of snapshots and let the 
computer figure out the potential. 
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