Interatomic Potentials

• Before we can start a simulation, we need the model!
• Interaction between atoms and molecules is determined by quantum mechanics:
 – Schrödinger Equation + Born-Oppenheimer approximation
 – BO: we can get rid of electrons and consider the effective interaction of nuclei – *the “potential energy surface”,* $V(R)$.

 $V(R)$ determines the quality of result.

• But we don’t know $V(R)$!
 – Semi-empirical approach: make a good guess and use experimental data to adjust it. *(Evaluation is fast! But difficult to get accurate potential.)*
 – Quantum chemistry approach: compute the surface at a few points and fit to a reasonable form. *(This is hard!)*
 – *Ab initio* approach: do the QM calculations “on the fly” as the trajectory is being generated. Couple a quantum calculation of the electrons with a classical one of the nuclei. *(Much more computer effort, but no analytic form needed.)*
The electronic-structure problem

The non-relativistic Hamiltonian for a collection of ions and electrons:

\[H = - \sum_{i=1}^{N_e} \frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{i<j} e_i e_j \frac{1}{r_{ij}} + \text{external fields} \]

+ symmetry and boundary conditions

“Atomic units”: \(\hbar = m_e = e = 1 \)

Energy in Hartrees=27.2eV=316,000K Lengths in Bohr radii= 0.529 Å = 5.29 x10\(^{-9}\)cm

\[H = - \sum_{i=1}^{N_e} \frac{1}{2} \nabla_i^2 + \sum_{a=1}^{N_i} \frac{1}{2 \left(M_a / m_e \right)} \nabla_a^2 + \sum_{a<b} \frac{Z_a Z_b}{r_{ab}} - \sum_{i,a} \frac{Z_a}{r_{ia}} + \sum_{i<j} \frac{1}{r_{ij}} + \text{external fields} \]

+ symmetry and boundary conditions

Accuracy needed to address questions at room temp.: 100 K=0.3 mHa=0.01eV.
MANY DECIMAL PLACES! Solving this is difficult!

9/11/18
Born-Oppenheimer (1927) Approximation

- Make use of the fact that nuclei are so much heavier than electrons.
 - *Worse case:* proton mass = 1836 electron mass. Electrons move much faster!
- Factor total wavefunction into **ionic** and **electronic** parts. *(adiabatic approx)*

\[
H = H_e + H_N
\]

\[
H_e = -\sum_{i=1}^{N_e} \frac{1}{2} \nabla_i^2 + \sum_{i<j} \frac{Z_a Z_b}{R_{a} - R_{b}} - \sum_{i,a} \frac{Z_a}{R_{a} - r_{i}} + \sum_{i,j} \frac{1}{|r_{i} - r_{j}|}
\]

\[
H_N = -\sum_{a=1}^{N_I} \frac{1}{2(M_a / m_e)} \nabla_a^2
\]

\[
\Psi(r \mid R) = \psi(r \mid R)\phi(R)
\]

variational trial function

\[
H_e \psi(r \mid R) = E_{BO}(R) \psi(r \mid R) \quad E_{BO}(R) = \text{BO energy surface}
\]

\[
(H_N + E_{BO}(R))\phi(R) = E_{tot}\phi(R)
\]

\[
\text{error}(E_{tot}) \approx O\left(\frac{m_e}{m_I}\right)^{3/2} \quad \text{electronic energy} \leq 10^{-5} Ha
\]

- Eliminate the electrons and replace by an effective potential.
- Does not require classical ions (but MD assumes it) (see end of course)
Semi-empirical potentials

• Assume a functional form, e.g., a 2-body or 3-body.
• Find some data from experiment.
• Use theory+simulation to determine parameters.

• What data?
 – Molecular bond lengths, binding energies
 – Atom-atom scattering in gas phase
 – Virial coefficients, transport in gas phase
 – Low temperature properties of the solid, cohesive energy, lattice constant, elastic moduli, vibrational frequencies, defect energies.
 – Melting temperature, critical point, triple point, surface tension, ….
 – Point defects, surface energies, diffusion barriers
 – Liquid structure

• GIGO, i.e. “garbage in, garbage out”!

• Interpolation versus extrapolation: “transferability”

• Are results predictive?

• How much theory to use, and how much experimental data?
Atom-Atom potentials

\[V(R) = \sum_{i<j} v(|r_i - r_j|) \]

- Total potential is the sum of atom-atom pair potentials
- Assumes molecules are rigid, in non-degenerate ground states. Interactions are weak so the internal structure is weakly affected by the environment.
- Geometry (steric effects) are important.
- Short-range effects—repulsion caused by cores: \(\exp(-r/c) \)
- Perturbation theory as \(r_{ij} \gg \) core radius
 - Electrostatic effects: do a multipole expansion (if charged or have dipoles).
 - Induction effects (by a charge on a neutral atom).
 - Dispersion effects: dipole-induced-dipole \((C_6/r^6) \)

\[C_6 = \int d\omega \alpha_A(\omega)\alpha_B(\omega) \]
Atomic systems

• Neutral rare gas atoms are the simplest atoms to find a potential for: attractive spheres.
 – Repulsion at short distances because of overlap of atomic cores.
 – Attraction at long distance do to the dipole-induced-dipole force. **Dispersion interaction is** $c_6 r^{-6} + c_8 r^{-8} + \ldots$.
 – He-He interaction is the most accurate. Use all available low density data (virial coefficients, quantum chemistry calculations, transport coefficients, \ldots) Good to better than 0.1K (e.g. Aziz potentials). But that system needs quantum simulations. Three-body (and many-body) interactions are small but not zero.
 – Good potentials are also available for other rare gas atoms.
 – Low density H_2 is almost like rare gas because angular degrees of freedom average out due to quantum effects. But H_2 has a much larger polarizability.
Lennard-Jones (2-body) potential

\[V(R) = \sum_{i < j} v(|r_i - r_j|) \quad v(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] \]

\(\varepsilon \approx \) minimum
\(\sigma = \) wall of potential

- Good model for non-bonded rare gas atoms
- Standard model for MD!

Why these exponents: 6 and 12?
- There is only 1 LJ system!

\[v(x) = 4 \left(x^{-12} - x^{-6} \right) \]

- Reduced units:
 - Energy in \(\varepsilon \): \(T^* = k_B T / \varepsilon \)
 - Lengths in \(\sigma \): \(x = r / \sigma \)
 - Time is mass units, pressure, density...

See references on FS pgs. 51-54

Fig. 1.3 Argon pair potentials. We illustrate the BBMS pair potential for argon (solid line) [Maitland and Smith 1971]. The BFW potential [Barker et al. 1971] is numerically very similar. Also shown is the Lennard-Jones 12–6 effective pair potential (dashed line) used in computer simulations of liquid argon.
Phase diagram of Lennard-Jones

Comparison with experiment for rare gas solids

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Ne</th>
<th>Ar</th>
<th>Kr</th>
<th>Xe</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_o (Å)</td>
<td>3.13</td>
<td>3.75</td>
<td>3.99</td>
<td>4.33</td>
</tr>
<tr>
<td>Theory</td>
<td>2.99</td>
<td>3.71</td>
<td>3.98</td>
<td>4.34</td>
</tr>
<tr>
<td>u_o (eV/atom)</td>
<td>Experiment</td>
<td>-0.02</td>
<td>-0.08</td>
<td>-0.11</td>
</tr>
<tr>
<td>Theory</td>
<td>-0.027</td>
<td>-0.089</td>
<td>-0.120</td>
<td>-0.172</td>
</tr>
<tr>
<td>B_o (GPa)</td>
<td>Experiment</td>
<td>1.1</td>
<td>2.7</td>
<td>3.5</td>
</tr>
<tr>
<td>Theory</td>
<td>1.8</td>
<td>3.2</td>
<td>3.5</td>
<td>3.8</td>
</tr>
</tbody>
</table>
! Loop over all pairs of atoms.
 do i=2,natoms
 do j=1,i-1
 !Compute distance between i and j.
 r2 = 0
 do k=1,ndim
 dx(k) = r(k,i) - r(k,j)
 !Periodic boundary conditions.
 if(dx(k).gt. ell2(k)) dx(k) = dx(k)-ell(k)
 if(dx(k).lt.-ell2(k)) dx(k) = dx(k)+ell(k)
 r2 = r2 + dx(k)*dx(k)
 enddo
 !Only compute for pairs inside radial cutoff.
 if(r2.lt.rcut2) then
 r2i=sigma2/r2
 r6i=r2i*r2i*r2i
 !Shifted Lennard-Jones potential.
 pot = pot+eps4*r6i*(r6i-1)- potcut
 !Radial force.
 rforce = eps24*r6i*r2i*(2*r6i-1)
 do k = 1 , ndim
 force(k,i)=force(k,i) + rforce*dx(k)
 force(k,j)=force(k,j) - rforce*dx(k)
 enddo
 endif
 enddo
 enddo
Lennard-Jones force calculation

for i in range(Natoms):
 for j in range(i+1,Natoms):
 dx=x[i]-x[j] # this will be a vector if x&y are array
 for d in range(3): # more clever ways to do this?
 if dx[d]>L[d]/2: dx[d] -= L[d]
 if dx[d]<-L[d]/2: dx[d] += L[d]
 r2 = sum(dx*dx) # dx[0]*dx[0]+dx[1]*dx[1]+dx[2]*dx[2]
 if r2>rcutoff2: continue # outside of cutoff distance^2
 r2i = sigma/r2
 r6i = r2i**3
 pot += eps4*r6i*(r6i-1) - potcut
 rforce = eps24*r6i*r2i*(2*r6i-1)
 F[i] = F[i] + rforce*dx # F[i] and dx are vectors!
 F[j] = F[j] - rforce*dx

Note number of times through loops over atoms
Pair potential \(\sim N^2 \) iterations; reduce to \(\sim N \) using neighbor tables.
Morse potential

\[v(r) = \varepsilon \left[e^{-2a(r-r_0)} - 2e^{-a(r-r_0)} \right] \]

- Like Lennard-Jones but for bonded atoms
- Repulsion is more realistic - but attraction less so.
- Minimum at \(r_0 \), at approximately the neighbor position.
- Minimum energy is \(\varepsilon \).
- Has an extra parameter “a” that can be used to fit a third property: **lattice constant** \((r_0)\), **bulk modulus** \((B)\) and **cohesive energy**.

\[
\left. \frac{dE}{dr} \right|_{r_0} = 0 \quad \quad B = -V \left. \frac{dP}{dV} \right|_{V_0} = V \left. \frac{d^2E}{dV^2} \right|_{V_0}
\]
Morse potential: parameters

<table>
<thead>
<tr>
<th>Metal</th>
<th>$a a_0$</th>
<th>β</th>
<th>L (ev) $\times 10^{-22}$</th>
<th>$\alpha = \text{A}^{-1}$</th>
<th>$r_0 = \text{A}$</th>
<th>D (ev)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>2.921</td>
<td>83.02</td>
<td>7.073</td>
<td>1.1836</td>
<td>3.733</td>
<td>0.2348</td>
</tr>
<tr>
<td>Ag</td>
<td>2.788</td>
<td>71.17</td>
<td>10.012</td>
<td>1.3690</td>
<td>3.115</td>
<td>0.3323</td>
</tr>
<tr>
<td>Ni</td>
<td>2.500</td>
<td>51.78</td>
<td>12.667</td>
<td>1.4199</td>
<td>2.780</td>
<td>0.4205</td>
</tr>
<tr>
<td>Cu</td>
<td>2.450</td>
<td>49.11</td>
<td>10.330</td>
<td>1.3588</td>
<td>2.866</td>
<td>0.3429</td>
</tr>
<tr>
<td>Al</td>
<td>2.347</td>
<td>44.17</td>
<td>8.144</td>
<td>1.1646</td>
<td>3.253</td>
<td>0.2703</td>
</tr>
<tr>
<td>Ca</td>
<td>2.238</td>
<td>39.63</td>
<td>4.888</td>
<td>0.80535</td>
<td>4.569</td>
<td>0.1623</td>
</tr>
<tr>
<td>Sr</td>
<td>2.238</td>
<td>39.63</td>
<td>4.557</td>
<td>0.73776</td>
<td>4.988</td>
<td>0.1513</td>
</tr>
<tr>
<td>Mo</td>
<td>2.368</td>
<td>88.91</td>
<td>24.197</td>
<td>1.5079</td>
<td>2.976</td>
<td>0.8032</td>
</tr>
<tr>
<td>W</td>
<td>2.225</td>
<td>72.19</td>
<td>29.843</td>
<td>1.4116</td>
<td>3.032</td>
<td>0.9906</td>
</tr>
<tr>
<td>Cr</td>
<td>2.260</td>
<td>75.92</td>
<td>13.297</td>
<td>1.5721</td>
<td>2.754</td>
<td>0.4414</td>
</tr>
<tr>
<td>Fe</td>
<td>1.988</td>
<td>51.97</td>
<td>12.573</td>
<td>1.3885</td>
<td>2.845</td>
<td>0.4174</td>
</tr>
<tr>
<td>Ba</td>
<td>1.650</td>
<td>34.12</td>
<td>4.266</td>
<td>0.65698</td>
<td>5.373</td>
<td>0.1416</td>
</tr>
<tr>
<td>K</td>
<td>1.293</td>
<td>23.80</td>
<td>1.634</td>
<td>0.49767</td>
<td>6.369</td>
<td>0.05424</td>
</tr>
<tr>
<td>Na</td>
<td>1.267</td>
<td>23.28</td>
<td>1.908</td>
<td>0.58993</td>
<td>5.336</td>
<td>0.06334</td>
</tr>
<tr>
<td>Cs</td>
<td>1.260</td>
<td>23.14</td>
<td>1.351</td>
<td>0.41569</td>
<td>7.557</td>
<td>0.04485</td>
</tr>
<tr>
<td>Rb</td>
<td>1.206</td>
<td>22.15</td>
<td>1.399</td>
<td>0.42981</td>
<td>7.207</td>
<td>0.04644</td>
</tr>
</tbody>
</table>

Fit for a Born potential

\[v(r) = \frac{Z_i Z_j}{r} + \frac{A}{r^n} \]

- Attractive charge-charge interaction
- Repulsive interaction determined by atom core.

EXAMPLE: NaCl

- \(Z_i = \pm 1 \) on simple cubic structure/alternating charges
- Use cohesive energy and lattice constant (at T=0) to determine A and n

\[
E_B = \frac{e_a}{d} + \frac{e_r A}{d^n} \\
\frac{dE_B}{dd} = -\frac{e_a}{d^2} - \frac{ne_r A}{d^{n+1}} = 0
\]

\(\Rightarrow n=8.87 \quad A=1500\text{eV}^{8.87} \)

- Now we need a check, say, the “bulk modulus”.
 - We get \(4.35 \times 10^{11} \text{dy/cm}^2 \) \(\text{Experiment} = 2.52 \times 10^{11} \text{dy/cm}^2 \)

- You get what you fit for! Other properties might be wrong.
Various Other Empirical Potentials

a) Hard sphere - simplest, first, no integration error using a specialized algorithm.

b) Hard sphere, square well

c) Coulomb (long-ranged), We will discuss later.

d) $1/r^{12}$ potential (short-ranged)

Fig. 1.4 Idealized pair potentials. (a) The hard-sphere potential; (b) The square-well potential; (c) The soft-sphere potential with repulsion parameter $\nu = 1$; (d) The soft-sphere potential with repulsion parameter $\nu = 12$.
Arbitrary Pair Potential

• For anything more complicated than a LJ 6-12 potential you can use a table-driven method.

• In start up of MD, compute or read in a table of potential values. You need to provide a table of \(V(r) \) & \(\frac{dV(r)}{dr} \).

• During computation, map interatomic distance to a grid and compute grid index and difference.

• Do table look-up and compute a (cubic) polynomial.

• Complexity is a memory fetch and a few flops/pair

• **Advantage:** Code is completely general-can handle any potential at the same cost.

• **Disadvantage:** some cost for memory fetch. Possible cache misses.
Failure of pair potentials

<table>
<thead>
<tr>
<th>Property</th>
<th>Cu</th>
<th>Ag</th>
<th>Pt</th>
<th>Au</th>
<th>LJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_c/T_m</td>
<td>30</td>
<td>28</td>
<td>33</td>
<td>33</td>
<td>13</td>
</tr>
<tr>
<td>E_v/E_c</td>
<td>0.33</td>
<td>0.36</td>
<td>0.26</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>C_{12}/C_{44}</td>
<td>1.5</td>
<td>1.9</td>
<td>3.3</td>
<td>3.7</td>
<td>1.00</td>
</tr>
</tbody>
</table>

- E_c = cohesive energy and E_v = vacancy formation energy
- T_m = melting temperature

- C_{12} and C_{44} are shear elastic constants.
 - A “Cauchy” relation makes them equal in a cubic lattice for any pair potential.
- Problem in metals: electrons are not localized!

After Ercolessi, 1997
Metallic potentials (EAM)

- Have an inner core + valence electrons
- Valence electrons are delocalized.
 - Hence pair potentials do not work very well. *Strength of bonds decreases as density increases* because of the Pauli principle.

\[\text{does } E \propto Z \text{ or } E \propto \sqrt{Z} \text{ for } Z = \text{coordination number} \]

- EXAMPLE: at a surface LJ potential predicts expansion but metals contract.
- Embedded Atom Model (EAM) or *glue models* work better. *Daw and Baskes, Phys. Rev. B 29, 6443 (1984).*
- Use electron density as a fundamental parameter.

\[
V(R) = \sum_{\text{atoms}} F(n_i) + \sum_{\text{pairs}} \phi(r_{ij}) \quad n_i = \sum_j \rho(r_{ij})
\]

- Three functions to optimize!
- Good for spherically symmetric atoms such as Cu, Pb.
 - Not for metals with covalent bonds or metals (Al) with large changes in charge density under shear.
Embedded-atom potential

Idea:

- Energy of an atom depends \textit{non-linearly} on the surrounding atoms (number and distance)
- Use electron density as a measure of the surrounding atoms

\[
E_{\text{coh}} = \sum_{i} F_i(\rho_i) + \frac{1}{2} \sum_{i} \sum_{j \neq i} V(R_{ij})
\]

- Embedding energy
- Pair potential

\[
\rho_i = \sum_{i \neq j} f(R_{ij})
\]
Accuracy of Embedded Atom Potentials

<table>
<thead>
<tr>
<th>Element</th>
<th>Linear thermal expansion in units of 10^-6/K</th>
<th>Activation energy for self-diffusion in eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>16.4</td>
<td>2.02</td>
</tr>
<tr>
<td>Ag</td>
<td>21.1</td>
<td>1.74</td>
</tr>
<tr>
<td>Au</td>
<td>12.9</td>
<td>1.69</td>
</tr>
<tr>
<td>Ni</td>
<td>14.1</td>
<td>2.81</td>
</tr>
<tr>
<td>Pd</td>
<td>10.9</td>
<td>2.41</td>
</tr>
<tr>
<td>Pt</td>
<td>7.8</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>Experiment</td>
<td>Experiment</td>
</tr>
<tr>
<td></td>
<td>16.7</td>
<td>2.07</td>
</tr>
<tr>
<td></td>
<td>19.2</td>
<td>1.78</td>
</tr>
<tr>
<td></td>
<td>14.1</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>12.7</td>
<td>2.88</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>< 2.76</td>
</tr>
</tbody>
</table>
Accuracy of Embedded Atom Potentials

- Phonon dispersion for fcc Ni
- Importance of checking the accuracy of empirical potential models
- The NRL potential is very accurate while the Voter&Chen potential overestimates the frequencies

![Graph showing frequency vs. reciprocal wave vector for Ni in fcc structure](image)
Modified Embedded Atom Method

- Similar form to EAM with modified density function

\[E_{\text{coh}} = \sum_i F_i(\rho_i) + \frac{1}{2} \sum_i \sum_{j \neq i} V(R_{ij}) \]

Embedding energy \quad Pair potential

\[\rho_i = \sum_{j,k} f(R_{ij}) \cdot f(R_{ik}) \cdot g(\cos \theta_{ijk}) \]

- Angular force terms particularly important for early transition metal elements and covalent bonded systems
- Applications of EAM to Si, Ti and refractory metals
Silicon potential

- Solid silicon cannot be described with a pair potential.
- Has open structure, with coordination 4!
- Tetrahedral bonding structure caused by the partially filled p-shell.
- Very stiff potential, short-ranged caused by localized electrons.
- Stillinger-Weber (Phys. Rev. B 31, 5262, 1985) potential is fit from:
 - lattice constant, cohesive energy, melting point, structure of liquid Si.

\[v_2 = \frac{B}{r^4} - A e^{1/(r-a)} \]
for \(r < a \)

\[v_3 = \sum_{i,j,k} \lambda e^{\gamma/(r_{ij}-a)+\gamma/(r_{ik}-a)} \left[\cos(\theta_i) + 1/3 \right]^2 \]

- Minimum at 109°
Hydrocarbon potential

• Empirical potentials to describe *intra-molecular* and *inter-molecular* forces

• **AMBER potential** is:
 – Two-body Lennard-Jones+ charge interaction (non-bonded)
 – Bonding potential: \(k_r (r_i - r_j)^2 \)
 – Bond angle potential \(k_a (\theta - \theta_0)^2 \)
 – Dihedral angle: \(v_n [1 - \cos(n\phi)] \)
 – All parameters taken from experiment.
 – Rules to decide when to use which parameter.

• Several “*force fields*” available
 – open source or commercial.
More potentials for organic molecules

- Distinguish between bonded and non-bonded interactions

1. Ethane $\text{H}_3\text{C}–\text{CH}_3$
 - Torsion of $\text{C}–\text{C}$ bond
 - Staggered versus eclipsed configuration has different energy
 - Requires four-body potential $V_{\text{torsion}} = K \cdot \cos(3\theta)$

2. Ethene $\text{H}_2\text{C}=\text{CH}_2$
 - Double bond between $\text{C}=\text{C}$ has different strength than single bond $\text{C}–\text{C}$ in ethane
 - Requires cluster functional or different potentials for sp, sp^2, and sp^3 carbon

- Changes in coordination are done by changing the potential

- Examples: AMBER, CHARMM, MM3
Water potentials

• Older potentials: BNS, MCY, ST2
• New ones: TIP3P, SPC, TIP4P
• TIP5P
 – Rigid molecule with 5 sites
 – Oxygen in center that interacts with other oxygens using LJ 6-12
 – 4 charges \((e = \pm 0.24)\) around it so it has a dipole moment
• Compare with phase diagram (melting and freezing), pair correlations, dielectric constant.
• But protons need a quantum description!

Mahoney & Jorgensen

FIG. 1. TIP5P monomer geometry.
Potentials for Charged Systems

Start with pair potentials with Coulomb interactions
• Buckingham plus electrostatic Coulomb term

\[V(r) = Ae^{-r/B} + \frac{Q}{r} - Cr^{-6} \]

Include polarization of ions
• Electric field from other ions induces a dipole moment
• Shell model
 - Describe the ion core and the electron shell separately as two particles connected by a spring
 - Spring constant between core and shell corresponds to polarizability
Problems with potentials

• The interaction is high dimensional function. It arises from quantum electronic effects so it is not a simple function.
• Procedure: fit data relevant to the system you are going to simulate: similar densities and local environment.
• Use other experiments to test the potential.
• Do quantum chemical (SCF or DFT) calculations of snapshots. Be aware that these may not be accurate enough.
• **No empirical potentials** work very well in an *inhomogenous environment*.
• This is the main problem with atom-scale simulations--they really are only suggestive since the potential may not be correct. *Universality helps*: sometimes the fine details of the potential are not important.
Summary of semi-empirical potentials

<table>
<thead>
<tr>
<th>Potentials</th>
<th>Metals</th>
<th>Semiconductors</th>
<th>Ionic materials</th>
<th>Polymers</th>
<th>Biomaterials</th>
<th>Organic materials</th>
<th>Noble Gases</th>
<th>Dimers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lennard Jones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckingham</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embedded Atom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modified embedded atom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stillinger-Weber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charmm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckingham + Coulomb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shell potentials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Which potential to use?

- Type of systems: metallic, covalent, ionic, van der Waals
- Desired accuracy: quantitative or qualitative
- Transferability: many different environments
- Efficiency: system size and computer resources
 - (10 atoms or 10^8 atoms. 100 fs or 10 ms)

Total error is the combination of:
 - **statistical error** (the number of time steps)
 - **systematic error** (the potential)

- Can we use machine learning or neural network ideas to generate better semi-empirical potentials? Get lots of data from quantum calculations of snapshots and let the computer figure out the potential.