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I. INTRODUCTION

In 1820, Laplace speculated on determining the con-
sequences of physical laws:

An intelligent being who, at a given moment,
knows all the forces that cause nature to move and
the positions of the objects that it is made from, if
also it is powerful enough to analyze this data, would
have described in the same formula the movements of
the largest bodies of the universe and those of the
lightest atoms. Although scientific research steadily
approaches the abilities of this intelligent being, com-
plete prediction will always remain infinitely far away.

His intuition about complete predictability has been
borne out: in general, dynamics is chaotic, thus making
long-range forecasts unreliable because of their sensitiv-
ity to initial conditions.

The question remains whether average properties
such as those that arise in statistical mechanics and ther-
modynamics may be predictable from first principles.
Shortly after the formulation of quantum mechanics
Dirac (1929) recognized

The general theory of quantum mechanics is now
almost complete. The underlying physical laws neces-
sary for the mathematical theory of a large part of
physics and the whole of chemistry are thus com-
pletely known, and the difficulty is only that the exact
application of these laws leads to equations much too
complicated to be soluble.

Today, we might add the disciplines of biology and
materials science to physics and chemistry as fundamen-
tally based on the principles of the Maxwell, Boltzmann,
and Schrodinger theories. The complication in solving
the equations has always been in the many-body nature
of most problems.

Rather than trying to encapsulate the result in a for-
mula as Laplace and Dirac would have done, in the last
half century we have turned to computer simulations as
a very powerful way of providing detailed and essen-
tially exact information about many-body problems, en-
abling one to go directly from a microscopic Hamil-
tonian to the macroscopic properties measured in
experiments. Because of the power of the methods, they
are used in most areas of pure and applied science; an
appreciable fraction of total scientific computer usage is
taken up by simulations of one sort or another.
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Computational physics has been said to constitute a
third way of doing physics, comparable to theory and
experiment. What is the role of theory or simulation in
physics today? How can simulations aid in providing un-
derstanding of a physical system? Why not just measure
properties in the laboratory? One answer is that simula-
tion can give reliable predictions when experiments are
not possible, very difficult, or simply expensive. Some
examples of such questions are What is the behavior of
hydrogen and other elements under conditions equiva-
lent to the interior of a planet or star? How do phase
transitions change in going from two to three to four
dimensions? Is the standard model of QCD correct?

Part of the reason for the pervasiveness of simulations
is that they can scale up with the increase of computer
power; computer speed and memory have been growing
geometrically over the last 5 decades with a doubling
time of roughly 18 months (Moore’s law). The earliest
simulations involved 32 particles; now one can do hun-
dreds of millions of particles. The increase in hardware
speed will continue for at least another decade, and im-
provements in algorithms will hopefully sustain the
growth for far longer than that. The discipline of com-
puter simulation is built around an instrument, the com-
puter, as other fields are built around telescopes and
microscopes. The difference between the computer and
those instruments is evident both in the computer’s per-
vasive use in society and in its mathematical, logical na-
ture.

Simulations are easy to do, even for very complex sys-
tems; often their complexity is no worse than the com-
plexity of the physical description. In contrast, other the-
oretical approaches typically are applicable only to
simplified models; methods for many-body problems in-
volve approximations with a limited range of validity. To
make theoretical progress, one needs a method to test
out or benchmark approximate methods to find this
range of application. Simulations are also a good educa-
tional tool; one does not have to master a particular
theory to understand the input and output of a simula-
tion.

Two different sorts of simulation are often encoun-
tered. In the first approach, one assumes the Hamil-
tonian is given. As Dirac said above, it is just a question
of working out the details—a problem for an applied
mathematician. This implies that the exactness of simu-
lation is very important. But what properties of a many-
body system can we calculate without making any un-
controlled approximations and thereby answer Laplace’s
and Dirac’s speculations? Today, we are far from solving
typical problems in quantum physics from this view-
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point. Even in classical physics, it takes a great deal of
physical knowledge and intuition to figure out which
simulations to do, which properties to measure, whether
to trust the results, and so forth. Nevertheless, significant
progress has been made.

The second approach is that of a modeler; one is al-
lowed to invent new models and algorithms to describe
some physical system. One can invent a fictitious model
with rules that are easy to carry out on a computer and
then systematically study the properties of the model.
Which precise equations they satisfy are secondary.
Later, one might investigate whether some physical sys-
tem is described by the model. Clearly, this approach is
warranted in such fields as economics, ecology, and bi-
ology since the “‘correct” underlying description has not
always been worked out. But it is also common in phys-
ics, and occasionally it is extremely successful, as for ex-
ample, in the lattice gas description of hydrodynamics
and models for self-organized criticality. Clearly, the
methodology for this kind of activity is different from
that of the applied mathematics problem mentioned
above, since one is testing the correctness both of the
model and of the numerical implementation.

Lattice models, such as the well-known Ising, Heisen-
berg, and Hubbard models of magnetism, are intermedi-
ate between these two approaches. It is less important
that they precisely describe some particular experiment
than that they have the right “physics.” What one loses
in application to real experiments, one gains in simula-
tion speed. Lattice models have played a key role in
understanding the generic properties of phase transi-
tions and in modeling aspects of the oxide superconduct-
ors. Since, necessarily, this review will just hit a few
highlights, I shall concentrate on the first type of simu-
lation and the road to precise predictions of the micro-
scopic world.

Il. CLASSICAL SIMULATIONS

The introduction of the two most common algorithms,
molecular dynamics (Alder and Wainright, 1957) and
Monte Carlo (Metropolis et al., 1953), occurred shortly
after the dawn of the computer age. The basic algo-
rithms have hardly changed in the intervening years, al-
though much progress has been made in elaborating
them (Binder 1978, 1984, 1995); Ciccotti and Hoover,
1986; Binder and Ciccotti, 1996; Ferguson et al., 1998).
The mathematical problem is to calculate equilibrium
and/or dynamical properties with respect to the configu-
rational Boltzmann distribution:

((’)}ZJdrl---drNO(R)e_BV(R)/fdrl---drNe_BV(R),
(2.1)

where O(R) is some function of the coordinates R
=(ry,ry,..,ry) and V(R) is the potential-energy func-
tion.

Part of the appeal of these simulations is that both
methods are very easy to describe. Molecular dynamics
is simply the numerical solution of Newton’s equation of
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motion; thermal equilibrium is established by ergodicity.
Monte Carlo (Metropolis or Markov Chain) is a random
walk through phase space using rejections to achieve de-
tailed balance and thereby sample the Boltzmann distri-
bution. Molecular dynamics can be used to calculate
classical dynamics; Monte Carlo only calculates static
properties, unless you accept that a random walk is an
interesting dynamical model. The two methods are not
completely different; for example, there exist hybrid
methods in which molecular dynamics are used for
awhile, after which the velocities are randomized.

What is not always appreciated is that one does not do
a brute force integration with Monte Carlo because the
integrand of Eq. (2.1) is very sharply peaked in many
dimensions. By doing a random walk rather than a di-
rect sampling, one stays where the integrand is large.
But this advantage is also a curse because it is not obvi-
ous whether any given walk will converge to its equilib-
rium distribution in the time available; this is the ergodic
problem. This aspect of simulation is experimental;
there are no useful theorems, only lots of controlled
tests, the lore of the practitioners, and occasional clean
comparisons with experimental data. Other subtleties of
these methods are how to pick the initial and boundary
conditions, determine error bars on the results, compute
long-range potentials quickly, and determine physical
properties (Allen and Tildesley, 1988).

An important reason why certain algorithms become
more important over time lies in their scaling with re-
spect to the number of variables: the complexity. To be
precise, if we want to achieve a given error for a given
property, we need to know how the computer time
scales with the degrees of freedom, say the number of
particles. The computer time will depend on the prob-
lem and property, but the exponents might be ‘“‘univer-
sal.” For the algorithms that scale the best, computer
power increases with a low power of the number of de-
grees of freedom. Order (N) is the best and is achiev-
able on the simplest classical problems. For those sys-
tems, as already noted, the number of particles used in
simulations has gone from 224 hard spheres in 1953 to
hundreds of millions of realistically interacting atoms to-
day. On the other hand, while a very accurate quantum
scattering calculation could be done for two scattering
particles in the 1950s, only four particles can be done
with comparable accuracy today. During this time, the
price of the fastest computer has remained in the range
of $20 million. This difference in scaling arises from the
exponential complexity of quantum scattering calcula-
tions.

Applying even the best order (N) scaling to a macro-
scopic system from the microscopic scale is sobering.
The number of arithmetic operations per year on the
largest machine is approximately 10'° today. Let us de-
termine the largest classical calculation we can consider
performing using that machine for an entire year. Sup-
pose the number of operations per neighbor of a particle
is about 10 and that each atom has about 10 neighbors.
Then the number of particles N times the number of
time steps 7 achievable in one year is NT~10". For a
physical application of such a large system, at the very
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minimum one has to propagate the system long enough
for sound to reach the other side so that 7> L where L
is the number of particles along one edge. Taking T
=10L for simplicity, one finds that even on the fastest
computer today we can have a cube roughly 10* atoms
on a side (102 atoms altogether) for roughly 7=10°
times steps. Putting in some rough numbers for silicon,
that gives a cube 2 um on a side for 10 ps. Although
Moore’s law is some help, clearly we need more clever
algorithms to treat truly macroscopic phenomena! (Be-
cause spacetime is four dimensional, the doubling time
for lengths scales will be six years.)

It has not escaped notice that many of the techniques
developed to model atoms have applications in other
areas such as economics. Although 10'2 atoms is small in
physical terms, it is much larger than the number of hu-
mans alive today. Using today’s computers we can al-
ready simulate the world’s economy down to the level of
an individual throughout a lifetime (assuming the inter-
actions are local and as simple as those between atoms.)

A key early problem was the simulation of simple lig-
uids. A discovery within the first few years of the com-
puter era was that even a hundred particles could be
used to predict things like the liquid-solid phase transi-
tion and the dynamics and hydrodynamics of simple lig-
uids for relatively simple, homogeneous systems. Later
on, Meiburg (1986) was able to see vortex shedding and
related hydrodynamic phenomena in a molecular dy-
namics simulation of 40000 hard spheres moving past a
plate. Much work has been performed on particles inter-
acting with hard-sphere, Coulombic, and Lennard-Jones
systems (Hansen and McDonald, 1986; Allen and Til-
desley, 1988). Many difficult problems remain even in
these simple systems. Among the unsolved problems are
how hard disks melt, how polymers move, how proteins
fold, and what makes a glass special.

Another important set of early problems was the Ising
model and other lattice models. These played a crucial
role in the theory of phase transitions, as elaborated in
the scaling and renormalization theory along with other
computational (e.g., series expansions) and theoretical
approaches. There has been steady progress in calculat-
ing exponents and other sophisticated properties of lat-
tice spin models (Binder, 1984) which, because of uni-
versality, are relevant to any physical system near the
critical point. An important development was the dis-
covery of cluster algorithms (Swendsen and Wang,
1975). These are special Monte Carlo sampling methods,
which easily move through the phase space even near a
phase transition, where any local algorithm will become
very sluggish. A key challenge is to generalize these
methods so that continuum models can be efficiently
simulated near phase boundaries.

lll. QUANTUM SIMULATIONS

A central difficulty for the practical use of classical
simulation methods is that the forces are determined by
an interacting quantum system: the electrons. Semi-
empirical pair potentials, which work reasonably well
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for the noble gases, are woefully inadequate for most
materials. Much more elaborate potentials than
Lennard-Jones (6-12) are needed for problems in bio-
physics and in semiconductor systems. There are not
enough high-quality experimental data to use to param-
etrize these potentials even if the functional form of the
interaction were known. In addition, some of the most
important and interesting modern physics phenomena,
such as superfluidity and superconductivity, are intrinsi-
cally nonclassical. For progress to be made in treating
microscopic phenomena from first principles, simula-
tions have to deal with quantum mechanics.

The basis for most quantum simulations is imaginary-
time path integrals (Feynman, 1953) or a related quan-
tum Monte Carlo method. In the simplest example, the
quantum statistical mechanics of bosons is related to a
purely classical problem, but one that has more degrees
of freedom. Suppose one is dealing with a quantum sys-
tem of N particles interacting with the standard two-
body Hamiltonian:

N hz ,
H=—> 5 —VitV(R).

i=12m;

(3.1)

Path integrals can calculate the thermal matrix elements:
(R|e”P"|R’). We still want to perform integrations as in
Eq. (2.1), except now we have an operator to sample
instead of a simple function of coordinates. This is done
by expanding into a path average:

(R|e’BH|R’>=f de---f dRy

Xexp[—=S(Ry, ..., Ry)]- (3.2)

In the limit that 7= 8/M —0, the action S has the explicit
form

2
—V(R)|. (33)

The action is real, so the integrand is non-negative, and
thus one can use molecular dynamics or Monte Carlo as
discussed in the previous section to evaluate the integral.
Doing the trace in Eq. (3.2) means the paths close on
themselves; there is a beautiful analogy between quan-
tum mechanics and the statistical mechanics of ring
polymers (Feynman, 1953). Figure 1(a) shows a picture
of a typical path for a small sample of ““normal” liquid
“He.

Most quantum many-body systems involve Fermi or
Bose statistics which cause only a seemingly minor
modification: one must allow the paths to close on them-
selves with a permutation of particle labels so that the
paths go from R to PR as in Fig. 1(b), with P a permu-
tation of particle labels. In a superfluid system, exchange
loops form that have a macroscopic number of atoms
connected on a single path stretching across the sample.
Superfluidity is equivalent to a problem of percolating
classical polymers. It is practical to perform a simulation
of thousands of helium atoms for temperatures both
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FIG. 1. Typical ““paths” of six helium atoms in 2D. The filled
circles are markers for the (arbitrary) beginning of the path.
Paths that exit on one side of the square reenter on the other
side. The paths show only the lowest 11 Fourier components.
(a) shows normal “He at 2 K, (b) superfluid *He at 0.75 K.

above and below the transition temperature (Ceperley,
1995). The simulation method gives considerable insight
into the nature of superfluids. Using this method, we
have recently predicted that H, placed on a silver sur-
face salted with alkali-metal atoms will become super-
fluid below 1 K (Gordillo and Ceperley, 1997). Krauth
(1996) did simulations comparable to the actual number
of atoms in a Bose-Einstein condensation trap (10%).
Unfortunately, Fermi statistics are not so straightfor-
ward: one has to place a minus sign in the integrand for
odd permutations and subtract the contribution of nega-
tive permutations from that of the positive permuta-
tions. This usually causes the signal/noise ratio to ap-
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proach zero rapidly so that the computer time needed to
achieve a given accuracy will grow exponentially with
the system size, in general as exp[2(F—F)/(kgT)],
where Fy is the total free energy of the fermion system,
F,, the free energy of the equivalent Bose system, and T
the temperature (Ceperley, 1996). The difference in free
energy is proportional to the number of particles, so the
complexity grows exponentially. The methods are exact,
but they become inefficient when one tries to use them
on large systems or at low temperatures. But we do not
know how to convert a fermion system into a path inte-
gral with a non-negative integrand to avoid this “sign”
problem.

A related area where these methods are extensively
used is the lattice gauge theory of quantum chromody-
namics. Because one is simulating a field theory in four
dimensions, those calculations are considerably more
time consuming than an equivalent problem in nonrela-
tivistic, first-quantized representation. Special-purpose
processors have been built just to treat those models.
Quantum Monte Carlo methods are also used to make
precise predictions of nuclear structure; those problems
are difficult because of the complicated nuclear interac-
tion, which has spin and isospin operators. Currently up
to seven nucleons can be treated accurately with direct
quantum Monte Carlo simulation (Carlson and Schia-
villa, 1998).

All known general exact quantum simulation methods
have an exponential complexity in the number of quan-
tum degrees of freedom (assuming one is using a classi-
cal computer). However, there are specific exceptions
(solved problems) including thermodynamics of bosons,
fermions in one dimension, the half-filled Hubbard
model (Hirsch, 1985), and certain other lattice spin sys-
tems.

Approaches with good scaling make approximations
of one form or another (Schmidt and Kalos, 1984). The
most popular is called the fixed-node method. If the
places where the wave function or density matrix
changes sign (the nodes) are known, then one can forbid
negative permutations (and matching positive permuta-
tions) without changing any local properties. This elimi-
nates the minus signs and makes the complexity polyno-
mial in the number of fermions. For systems in magnetic
fields, or in states of fixed angular momentum, one can
fix the phase of the many-body density matrix and use
quantum Monte Carlo for the modulus (Ortiz et al.,
1993). Unfortunately, except in a few special cases, such
as one-dimensional problems where the nodes are fixed
by symmetry, the nodal locations or phases must be ap-
proximated. Even with this approximation, the fixed-
node approach gives accurate results for strongly corre-
lated many-body systems.

Even at the boson level, many interesting problems
cannot be solved. For example, there are serious prob-
lems in calculating the dynamical properties of quantum
systems. Feynman (1982) made the following general ar-
gument that quantum dynamics is a very hard computa-
tional problem: If, to make a reasonable representation
of the initial wave function for a single particle involves
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giving b complex numbers, then N particles will take on
the order of b" numbers. Just specifying the initial con-
ditions gets out of hand very rapidly once b and N get
reasonably large. (Remember that Laplace’s classical
initial conditions only required 6 N numbers). One may
reduce this somewhat by using symmetry, mainly per-
mutational symmetry, but on close analysis that does not
help nearly enough. The only way around this argument
is to give up the possibility of simulating general quan-
tum dynamics and to stick to what is experimentally
measurable; arbitrary initial conditions cannot be real-
ized in the laboratory anyway. If quantum computers
ever become available, they would at least be able to
handle the quantum dynamics, once the initial condi-
tions are set(Lloyd, 1996).

IV. MIXED QUANTUM AND CLASSICAL SIMULATIONS

A major development on the road to simulating real
materials in the last decade has been the merging of
quantum and classical simulations. In simulations of sys-
tems at room temperature or below, electrons are to a
good approximation at zero temperature, and in most
cases the nuclei are classical. In those cases, there exists
an effective potential between the nuclei due to the elec-
trons. Knowing this potential, one could solve most
problems of chemical structure with simulation. But it
needs to be computed very accurately because the natu-
ral electronic energy scale is the Hartree or Rydberg
(me*/?), and chemical energies are needed to better
than kz7T. At room temperature this requires an accu-
racy of one part in 10° for a hydrogen atom. Higher
relative accuracy is needed for heavier atoms since the
energy scales as the square of the nuclear charge.

Car and Parrinello (1985) showed that it is feasible to
combine classical molecular dynamics with the simulta-
neous evaluation of the force using density-functional
theory. Earlier, Hohenberg and Kohn (1964) had shown
that the electronic energy is a functional only of the
electronic density. In the simplest approximation to that
functional, one assumes that the exchange and correla-
tion energy depend only on local electron density (the
local-density approximation). This approximation works
remarkably well when used to calculate minimum-
energy structures. The idea of Car and Parrinello was to
evolve the electronic wave function with a fictitious dy-
namics as the ions are moving using classical molecular
dynamics. A molecular dynamics simulation of the en-
larged system of the ions plus the electronic wave func-
tions is performed (Payne et al., 1992). Because one
does not have to choose the intermolecular potential,
one has the computer doing what the human was previ-
ously responsible for. The method has taken the field by
storm in the last decade. There is even third-party soft-
ware for performing these simulations, a situation rare
in physics and an indication that there is an economic
interest in microscopic simulation. Some recent applica-
tions are to systems such as nanotubes, water, liquid sili-
con, and carbon. Why was the combination of electronic
structure and molecular dynamics made in 1985 and not
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before? Partly, because only in 1985 were computers
powerful enough that such a combined treatment was
feasible for a reasonably large system. We can anticipate
more such examples as computer power grows and we
go towards ab initio predictions. For example, Tucker-
man et al. (1997) performed simulations of small water
clusters using path-integral molecular dynamics for the
nucleus and density-functional calculations for the elec-
tronic wave functions.

Today, the combined molecular dynamics method is
too slow for many important problems; in practice one
can only treat hundreds of electrons. Also, even though
the LDA method is much more accurate than empirical
potentials, on many systems it is not accurate enough. It
has particular problems when the electronic band gap is
small and the ions are away from equilibrium such as
when bonds are breaking. Much work is being devoted
to finding more accurate density-functional approxima-
tions (Dreizler and Gross, 1990).

V. PROSPECTS

As computer capabilities grow, simulations of many-
body systems will be able to treat more complex physical
systems to higher levels of accuracy. The ultimate im-
pact for an extremely wide range of scientific and engi-
neering applications will undoubtedly be profound. The
dream that simulation can be a partner with the experi-
mentalist in designing new molecules and materials has
been suggested many times in the last thirty years. Al-
though there have been some successes, at the moment,
more reliable methods for calculations energy differ-
ences to 0.01 eV (or 100 K) accuracy are needed. One
does not yet have the same confidence in materials cal-
culations that Laplace would have had in his calculations
of planetary orbits. Because of the quantum nature of
the microscopic world, progress in computers does not
translate linearly into progress in materials simulations.
Thus there are many opportunities for progress in the
basic methodology.

It is unlikely that any speedup in computers will allow
direct simulation, even at the classical level, of a truly
macroscopic sample, not to speak of macroscopic quan-
tum simulations. A general research trend is to develop
multiscale methods, in which a simulation at a fine scale
is directly connected to one at a coarser scale, thus al-
lowing one to treat problems in which length scales dif-
fer. Historically this has been done by calculating pa-
rameters, typically linear response coefficients, which
are then used at a higher level. For example, one can use
the viscosity coefficient calculated with molecular dy-
namics in a hydrodynamics calculation. Abraham et al.
(1998) describe a single calculation which goes from the
quantum regime (tight-binding formulation), to the
atomic level (classical molecular dynamics) to the con-
tinuum level (finite element). They apply this methodol-
ogy to the propagation of a crack in solid silicon. Quan-
tum mechanics and the detailed movement of individual
atoms are important for the description of the bond
breaking at the crack, but away from the crack, a
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description of the solid in terms of the displacement field
suffices. While the idea of connecting scales is easy to
state, the challenge is to carry it out in a very accurate
and automatic fashion. This requires one to recognize
which variables are needed in the continuum description
and to take particular care to have consistency in the
matching region.

On a technical level, a large fraction of the growth in
computer power will occur for programs that can use
computer processors in parallel, a major focus of re-
searchers in the last decade or so, particularly, in areas
requiring very large computer resources. Parallelization
of algorithms ranges from the trivial to the difficult, de-
pending on the underlying algorithm.

Computational physics and simulations in particular
have both theoretical and experimental aspects, al-
though from a strict point of view they are simply an-
other tool for understanding experiment. Simulations
are a distinct way of doing theoretical physics since,
properly directed, they can far exceed the capabilities of
pencil and paper calculations. Because simulations can
have many of the complications of a real system, unex-
pected things can happen as they can in experiments.
Sadly, the lore of experimental and theoretical physics
has not yet fully penetrated into computational physics.
Before the field can advance, certain standards, which
are commonplace in other technical areas, need to be
adopted so that people and codes can work together.
Today, simulations are rarely described sufficiently well
that they can be duplicated by others. Simulations that
use unique, irreproducible and undocumented codes are
similar to uncontrolled experiments. A requirement that
all publications include links to all relevant source codes,
inputs, and outputs would be a good first step to raising
the general scientific level.

To conclude, the field is in a state of rapid growth,
driven by the advance of computer technology. Better
algorithms, infrastructure, standards, and education
would allow the field to grow even faster and growth to
continue when the inevitable slowing down of computer
technology happens. Laplace’s and Dirac’s dream of
perfect predictability may not be so far off if we can
crack the quantum “‘nut.”
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