The Ising Model

Today we study one of the most studied models in statistical physics, the **Ising Model (1925)**.

- Some applications:
 - Magnetism (the original application)
 - Liquid-gas transition
 - Binary alloys (can be generalized to multiple components)

- Onsager found the exact answer for the 2D square lattice (1944). (1D was done by Ising in 1925.)

- Used to develop *renormalization group theory* of phase transitions in 1970’s.

- We’ll discuss critical slowing down of Metropolis and a “cluster method”.

Figures from Landau and Binder (LB), MC Simulations in Statistical Physics, 2000.
The Ising Model

• Consider a lattice with L^2 sites and the connectivity of a square lattice.
• Each lattice site has a single spin variable: $s_i = \pm 1$.
• With magnetic field h, the energy is:

$$H = -\sum_{i,j} J_{ij} s_i s_j - \sum_{i=1}^{N} h_i s_i$$
and
$$Z = \sum e^{-\beta H}$$

• J is the nearest neighbor (i,j) coupling:
 - $J > 0$ models a ferromagnet.
 - $J < 0$ models an antiferromagnet.

• Picture of spins at the critical temperature T_c.
 Note the connected (percolated) clusters.
Mapping a liquid-gas model to the Ising Model

- For **liquid-gas** transition let \(n(r) \) be the density at lattice site \(r \) which can have two values \(n(r) = (0,1) \).

\[
E = \sum_{(i,j)} v_{ij} n_i n_j + \mu \sum_i n_i
\]

- First term models an interatomic repulsion.
- Second term is the chemical potential.
- Let’s map this into the Ising model spin variables:

\[
s = 2n - 1 \quad \text{or} \quad n = \frac{1}{2} (s + 1)
\]

\[
H = \frac{v}{4} \sum_{(i,j)} s_i s_j + \frac{(v + \mu)}{2} \sum_i s_i + c
\]

\[
J = -v / 4
\]

\[
h = -(v + \mu) / 2
\]

\[
M = \frac{1}{N} \sum_i s_i \quad \langle n \rangle = \frac{1}{N} \sum_i n_i = \frac{1}{2} (M + 1)
\]
Phase Diagram (J>0)

- **High-T phase:** spins are random (uncorrelated).
- **T \(> T_c\) phase near \(T_c\):** spins are random but correlated: magnetic short-range (local) order.
- **Low-T (\(T\sim0\)) phase:** spins are aligned (fully correlated).
- A **first-order transition** (where there is a discontinuous jump in \(M\)) occurs as \(H\) passes through zero for \(T<T_c\).
- Similar to **liquid-gas phase diagram.** Magnetic field=pressure.
Critical point

- Concepts and understanding are universal. They apply to all phase transitions of a similar type.
- Order parameter is the *average* magnetization: \(<s(r)> = m(r) \).
- Look at correlation function: \(\chi(r-r') = <s(r)s(r')> - <s(r)> <s(r')> \).
- Magnetic susceptibility is: \(\frac{dm(r)}{dh(r')} \bigg|_{h \to 0} = \beta \chi(r-r') \)
- In ordered phase, spins are correlated over long distances.
- At the critical point, fluctuations at all length scales.

![Fig. 4.1 Typical spin configurations for the two-dimensional Ising square lattice: (left) \(T \ll T_c \); (center) \(T \sim T_c \); (right) \(T \gg T_c \).](image)
Magnetization probability

- How does magnetization vary across transition?
- And with the system size?
- In ordered phase, broken symmetry and barrier to flipping.

Figure 2. Probability distribution $P_L(s)$ of the magnetization s per spin of $L \times L \times L$ subsystems of a simple cubic Ising lattice with $N = 24^3$ spins and periodic boundary conditions for zero magnetic field and temperature $k_B T/J = 4.0$ (note that the critical temperature occurs at about $k_B T_c/J \approx 4.51[26]$).

Figure 3. Schematic variation of the probability distribution $P_L(m)$ to magnetization m in a finite system of linear dimension L from $T > T_c$ to $T < T_c$ and the associated temperature variation of the average order parameter $\langle |m| \rangle$, “susceptibility” $\chi_L = \frac{-\partial^2 \langle |m|^2 \rangle}{\partial T^2}$, reduced order cumulant $U_L = 1 - \frac{\langle m^4 \rangle}{3 \langle m^2 \rangle^2}$ (right part).
• If we quench too fast we will end in a two phase region.
• The larger the system the sharper the phase transition.

Phase Diagram: \(T \) vs. \(M \)

Magnetization Scaling depends on \(T \):
\[
M \sim (T_c - T)^\beta \\
\beta = 0.125 \text{ for } D=2. \\
\beta = 0.325 \text{ for } D=3.
\]

Oct. 27, 2020 Atomic Scale Simulation
Spinoidal decomposition

Suppose only local spin flips.

- Model for phase separation such as a binary “alloy” (or oil and vinegar).
- Dynamics depends on whether the spin is conserved
 - Spin flip (left)
 - Spin exchange (right) conserves particle number.
- Transition appears through a coarsening of the separation.
- Becomes slower and slower as the transition proceeds: Critical Slowing down.

Oct. 27, 2020 Atomic Scale Simulation
Surfaces/Boundary Conditions

- By quenching quickly we may catch a “trapped” surface.
- Topological excitation.
- You can see steps, etc.
- Can use *twisted boundary conditions* to study a liquid-gas surface without worrying about it disappearing.
- Just put -J along one plane (side): i.e. antiferromagnetic interaction along one plane.

\[H = - \sum_{(i,j)} J_{ij} S_i S_j \]

\[J_{ij} = \begin{cases} J & i \neq 0 \\ -J & i = 0 \end{cases} \]
Critical slowing down

- Near the transition dynamics gets very slow if you use any local update method.
- The larger the system the less likely it is that the system can flip over.

Monte Carlo of a zero-field Ising Lattice
U vs. time and M vs. time.
Simple Metropolis algorithm

- Simplest Metropolis:
 - Lots of tricks to make it run faster.
 - Tabulate exp(-E/kT)
 - Do several flips each cycle by packing bits into a word
 - But critical slowing down near T_c.
 - At low T accepted flips are rare--can speed up by sampling acceptance time.
 - At high T all flips are accepted--ergodic problem.

Metropolis importance sampling Monte Carlo scheme

1. Choose an initial state
2. Choose a site i
3. Calculate the energy change ΔE which results if the spin at site i is overturned
4. Generate a random number r such that $0 < r < 1$
5. If $r < \exp(-\Delta E/k_BT)$, flip the spin
6. Go the next site and go to (3)
Heat Bath Transition moves

Sample a neighborhood of a given point so that it is in local equilibrium.

\[T(s \rightarrow s') = \frac{\pi(s')}{C(s)} \quad \text{with} \quad C(s) = \sum_{s'' \in N(s)} \pi(s'') \]

Then the acceptance probability will be:

\[A(s \rightarrow s') = \min \left(1, \frac{C(s)}{C(s')} \right) \]

- Can be used only if it is possible to quickly compute the normalization ratio, e.g. lattice models.
- Acceptance ratio=1 if \(C(s) \) is independent of \(s \).
JAVA Ising applet

https://mattbierbaum.github.io/isin.js/
Dynamically runs using the heat bath algorithm.
Glauber and Kawasaki dynamics

- **Heat bath or Glauber:**
 - Pick a spin and flip with probability
 - Will have lower flipping rate but no high T problem.

- **N-fold way:**
 - Look at all the sites, choose the site “i” according to:
 - The normalization determines how time advances.
 - Discuss this later with kinetic MC

- **Kawasaki dynamics**
 - Exchange spins and accept or reject
 - Spin is constant as in spinoidal decomposition.

- **ALL THESE ARE LOCAL** hence suffer from slowdown.

\[p^i = \frac{\pi_i}{\pi_i + \pi_j} = \frac{1}{1 + e^{-\beta \Delta E}} \]

\[T^i = \frac{\pi_i}{\sum_j \pi_j} \]
Local algorithms

- Simplest Metropolis:
 - Tricks make it run faster.
 - Tabulate \(\exp(-E/kT) \)
 - Do several flips each cycle by packing bits into a word.

But,
- Critical slowing down \(\sim T_c \).
- At low \(T \), accepted flips are rare --can speed up by sampling acceptance time.
- At high \(T \) all flips are accepted --quasi-ergodic problem.

Metropolis importance sampling Monte Carlo scheme

1. Choose an initial state
2. Choose a site \(i \)
3. Calculate the energy change \(\Delta E \) which results if the spin at site \(i \) is overturned
4. Generate a random number \(r \) such that \(0 < r < 1 \)
5. If \(r < \exp(-\Delta E/k_B T) \), flip the spin
6. Go the next site and go to (3)
Critical slowing down

- Near the transition dynamics gets very slow if you use any local update method.
- The larger the system the less likely it is the system can flip over.
- Free energy barrier
Monte Carlo efficiency is governed by a critical dynamical exponent Z.

With $\tau_B = \text{correlation time}$ and $\xi = \text{correlation length}$

$$\xi = (\text{var}(O)\tau_B \text{time/step})^{-1}$$

$$\tau_B \propto \xi^2 / D$$

near T_c $\xi \rightarrow L \Rightarrow \tau \rightarrow L^2$

$$\tau \propto L^Z$$

Non-local updates reduce the exponent, allowing exploration of the "critical region."

FIG. 1. Log-log plots of correlation times for Monte Carlo simulations of the two-dimensional Ising model at the critical temperature as a function of the linear dimension L. The circles show data for a standard Monte Carlo simulation, and the line marked "$z = 2.125$" gives the expected asymptotic slope (Ref. 4). The crosses show data for the new method, with a least-squares fit labeled with its slope of "$z = 0.35$".
Swendsen-Wang cluster algorithm

Wolff cluster flipping method for the Ising model

1. Randomly choose a site
2. Draw bonds to all nearest neighbors with probability
 \(p = 1 - e^{-K\delta_\eta_\eta} \)
3. If bonds have been drawn to any nearest neighbor site \(j \), draw
 bonds to all nearest neighbors \(k \) of site \(j \) with probability
 \(p = 1 - e^{-K\delta_{\eta_\eta}} \)
4. Repeat step (3) until no more new bonds are created
5. Flip all spins in the cluster
6. Go to (1)

Swendsen–Wang algorithm for a q-state Potts model

1. Choose a spin
2. Calculate \(p = 1 - e^{-K\delta_\eta_\eta} \) for each nearest neighbor
3. If \(p < 1 \), generate a random number \(0 < \text{rng} < 1 \);
 If \(\text{rng} < p \) place a bond between sites \(i \) and \(j \)
4. Choose the next spin and go to (2) until all bonds have been
 considered
5. Apply the Hoshen–Kopelman algorithm to identify all clusters
6. Choose a cluster
7. Generate a random integer \(1 \leq R_i \leq q \)
8. Assign \(\sigma_i = R_i \) to all spins in the cluster
9. Choose another cluster and go to (7)
10. When all clusters have been considered, go to (1)

No critical slowing down at the critical point.

Non-local algorithm. Prove detailed balance! See FS 399-408

Oct. 27, 2020 Atomic Scale Simulation
Correctness of cluster algorithm

- Cluster algorithm:
 - Transform from spin space to bond space \(n_{ij} \)

 (Fortuin-Kasteleyn transform of the Potts model)
 - Identify clusters: draw bonds between like spins with probability: \(p = 1 - \exp(-2J/kT) \)
 - Flip some of the clusters.
 - This determines the new spins.

Example of embedding method: solve dynamics problem by enlarging the state space (to spins and bonds).

- Two points to prove:
 - Detailed balance
 - Joint probability:
 - Ergodicity: we can go anywhere

\[
\Pi(\sigma, n) = \frac{1}{Z} \prod_{\langle i,j \rangle} \left[(1 - p) \delta_{n_{i,j}} + p \delta_{\sigma_i - \sigma_j} \delta_{n_{i,j} - 1} \right]
\]

\[
p \equiv 1 - e^{-2J/kT}
\]

\[
Tr_n \left\{ \Pi(\sigma, n) \right\} = \frac{1}{Z} e^{-2J/kT \sum_{\langle i,j \rangle} \delta_{\sigma_i - \sigma_j - 1}}
\]