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Review: Periodic Boundary Conditions

Why do we use periodic boundary
conditions?

• Macroscopics systems O(1023) particles.
• We eliminate surfaces from the simulation.
• Allows us to get at bulk properties with few particles.
• Applies to solids, liquids, gases, and plasmas.

(Must be careful with solids.)
• Some finite size effects remain, but most can be removed

with scaling.
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Long Range Potentials

• What makes a potential long range?
Consider an infinite cubic lattice of particles with charge +1.
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Long Range Potentials

• What makes a potential long range?
Consider an infinite cubic lattice of particles with charge +1.

• Consider the potential on a single charge from all the other
charges in the lattice.

V (ri) =
∑

L6=0

1

|ri − L| (1)
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Long Range Potentials (continued)

• Let’s approximate with an integral

V (ri) ≈
∫ ∞

0
4πr2 dr

ρ

r
(2)
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Long Range Potentials (continued)

• Let’s approximate with an integral

V (ri) ≈
∫ ∞

0
4πr2 dr

ρ
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(3)

• This diverges!
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Long Range Potentials (continued)

• Let’s approximate with an integral

V (ri) ≈
∫ ∞

0
4πr2 dr

ρ

r
(4)

• This diverges!
• Is this result physically correct?
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Long Range Potentials (continued)

• Let’s approximate with an integral

V (ri) ≈
∫ ∞

0
4πr2 dr

ρ

r
(5)

• This diverges!
• Is this result physically correct?
• YES! The potential due an infinite amount of charge is

inifinite.
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Long Range Potentials (continued)

• Let’s approximate with an integral

V (ri) ≈
∫ ∞

0
4πr2 dr

ρ

r
(6)

• This diverges!
• Is this result physically correct?
• YES! The potential due an infinite amount of charge is

inifinite.
• What’s the catch? Why do we bother with this problem?
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Long Range Potentials (continued)

• Let’s approximate with an integral

V (ri) ≈
∫ ∞

0
4πr2 dr

ρ

r
(7)

• This diverges!
• Is this result physically correct?
• YES! The potential due an infinite amount of charge is

inifinite.
• What’s the catch? Why do we bother with this problem?
• Physical systems are charge neutral.
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Neutral Systems

• In a neutral system, the + and − charges screen each
other, so the energy per cell is finite.

• But, we still don’t know how to do the lattice sums:

Vcell =
1

2

∑

i6=j

∑

L

ZiZj

|ri − rj − L| (8)
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What is Long Range?

• A potential is long range if the real-space lattice sum will not
(naively) converge.

• In 3D, a potential is long range if it decays at a rate < r−3.

• In 2D, a potential is long range if it decays at a rate < r−2.
• In practice, we often use the techniques we will discuss for

potentials that aren’t strictly long range.
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Motivation

Before we begin with some (not so) nasty math, take a step
back to see why this is necessary.
Most interesting systems contain charges:

• any atomic system at level of nuclei and electrons.
• at the atom level, any system with charged defects.
• any system with disolved ions (biological system).
• partial charges (in chemistry).
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Fourier Transforms

Idea: Take advantage of periodicity using Fourier Transforms.
• If f(r) is a continuous periodic function such that

f(r + L) = f(r), (9)

where L = nxLxx̂ + nyLyŷ + nzLz ẑ, then we can write

f(r) =
∑

k

eik·rfk, (10)

k = mx
2π

Lx

x̂ + my
2π

Ly

ŷ + mz
2π

Lz

ẑ. (11)

fk =
1

Ω

∫

all space
d3

re−ik·rf(r) (12)

• Note that the k-vectors are discrete, not continuous.
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Fourier Tranforms and Potentials

Idea: If we write the potential energy in k-space, perhaps our
sum will converge... Let’s try!

V =
1

2

X

i6=j

X

L

v(|ri − rj − L|) (13)

=
1

2

X

i6=j

X

L

X

k

eik·(ri−rj−L)vcell
k

(14)

=
1

2

X

i6=j

X

k

eik·(ri−rj)v
all space
k

(15)

vcell
k

=
1

Ω

Z

cell
d3

r e−ik·rv(|r|) (16)

v
all space
k

=
1

Ω

Z

cell
d3

r

X

L

e−ik·(r+L)v(|r + L|) (17)

=
1

Ω

Z

all space
d3

r e−ik·rv(|r|) (18)
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Fourier Tranforms and Potentials (continued)

Did it work?!
• We did succeed in writing down potential in k-space.
• But, let’s look at vk for coulomb potential.

vcoulomb
k =

4πq1q2

k2
(19)

• Potential is decays slowly in k-space too. Summation won’t
converge!

• Have I wasted our time?
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Origins of convergence problems
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• Real space convergence problem comes from this tail,
which corresponds to the singularity in k-space as k → 0.

Long Range Potentialsand the Ewald Method – p. 11/24



Origins of convergence problems

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r

v(
r)

Coulomb potential in real space

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

k

v k

Coulomb potential in k space

• Real space convergence problem comes from this tail,
which corresponds to the singularity in k-space as k → 0.

• k-space converge problem comes from this tail, which
corresponds to origin singularity in real space.
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The Ewald Breakup Method: Concept

Idea: Break the potential into two pieces:
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The Ewald Breakup Method: Concept

Idea: Break the potential into two pieces:
• one short ranged in real space
• one short ranged in k-space
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The Ewald Breakup Method: Conventional Breakup

In the classical breakup of the coulomb potential, we choose

vshort =
q1q2

r
erfc(κr)

vlong(r) =
q1q2

r
erf(κr)

v
long
k =

4πq1q2

Ωk2
exp

(−k2

4κ2

)

erf(z) ≡ 2√
π

∫ z

0
e−t2 dt

erfc(z) ≡ 1 − erf(z)

• Choose κ such that vshort(r) is negligible at r = L/2.
• Need only one image in real space: minimum image

convention.
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The Ewald Breakup Method: Accuracy

The total potential may be written as

V = C+
∑

i6=j







vshort(rij) +
∑

|k|<kc

eik·(rj−rj)v
long
k







, rij = min
L

|ri−rj−L|

• In conventional breakup,

vshort
(

L

2

)

=
2q1q2

L
erfc

(

κL

2

)

6= 0.

This gives some error.
• Summation in k-space is truncated at desired accuracy.
• We adjust parameter κ to minimize total error.
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The Ewald Breakup Method: Physical Interpretation

• The Poisson equation is linear, therefore we are free to add
charge as long as we subtract it again.

• Ewald breakup can be thought of as adding a neutralizing
cloud of charge in real space, then subtracting that same
charge cloud in k-space.
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Optimized Breakup Method

Is the conventional method the best we can do?
No!

• Write

vshort(r) =
∑

n

cnhn(r) (20)

or

vlong(r) =
∑

n

cnhn(r) (21)

• hn’s subject to appropriate boundary condtions.
• Choose k-space cutoff, kc.
• Write error that comes from neglecting larger k’s.
• Minimize error w.r.t cn’s.
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Optimized Breakup Method Results

Method and results due to Ceperley and Natoli(1995).
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Algorithms

Let’s look at the k-space sum.

Vk =
1

2

X

i6=j

X

k

eik·(|ri−rj |)vk (22)

=
1

2

X

i,j

X

k

eik·(|ri−rj |)vk −
1

2

X

k

vk

| {z }

C

(23)

=
1

2

X

k

2

4
X

i

eik·ri

3

5

| {z }

ρk

2

4
X

j

e−ik·rj

3

5

| {z }

ρ
−k

vk + C (24)

• ρk = ρ∗−k
, so we need only compute one of them.

• Computation of all ρk’s goes as NMk, where Mk is the
number of k-vectors.
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Algorithm for k-space sums

Compute ρk for all k.
for all k ∈ k-vector list do

Vlong := Vlong + ρkρ−kvk

end for

Changes due to moving a few particles can be computed more
quickly.
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Computing ρk

Recall that k = 2πm1

L
x̂ + 2πm2

L
ŷ + 2πm3

L
ẑ. Then

eik·r =
[

e
2πirx

L

]m1
[

e
2πiry

L

]m2
[

e
2πirz

L

]m3

Complex multiplication is much faster than complex
exponentiation. (Need sin’s and cos’s)
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Algorithm to quickly compute ρk

Create list of k & corresponding (m1, m2, m3) indices.
Zero out ρk

for all i ∈ particles do
for j ∈ [1 · · · 3] do

Compute Ci
j ≡ eibj ·ri

for m ∈ [−mmax . . . mmax] do
Compute [Ci

j ]
m and store in array

end for
end for
for all (m1, m2, m3) ∈ index list do

Compute eik·ri = [Ci
1]

m1 [Ci
2]

m2 [Ci
3]

m3 from array
Accumulate to ρk

end for
end for
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Computational Complexity

• If we use neighbor tables and optimize κ, Ewald method

has a complexity O
(

N
3

2

)

.

• If we do not reoptimize, then we have O
(

N2
)

.

• With efficient code, prefactor is small relative to more
sophisticated methods.
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Alternative Methods

• Fast Multipole Method
◦ Recursively subdivide space into cells.
◦ Find dipole moment of each cell.
◦ Use specialized rules to determine how multipole

moments for cells depends on cells below them in the
hierarchy.

◦ ∼ O(N) for large systems
• Particle Cell Method

◦ Perform k-space sums on a regular grid using Fast
Fourier Transforms.

◦ Developed by Hockney
◦ O(N ln(N))
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