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Basics of Statistical Mechanics

• Review of ensembles
– Microcanonical, canonical, Maxwell-Boltzmann

– Constant pressure, temperature, volume,…

• Thermodynamic limit

• Ergodicity  (see online notes also)

• Reading assignment:  Frenkel & Smit pgs. 1-22.
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The Fundamentals according to Newton
“Molecular Dynamics”

• Pick particles, masses and potential (i.e. forces)

• Initialize positions and momentum (i.e., boundary conditions in time)

• Solve  F = m a to determine r(t), v(t).

• Compute properties along the trajectory

• Estimate errors.

• Try to use the simulation to answer physical questions.

Also we need boundary conditions in space and time.  
Real systems are not isolated!

What about interactions with walls, stray particles?
How can we treat 1023 atoms at long times?
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Statistical Ensembles
• Classical phase space is 6N variables (pi, qi) with a 

Hamiltonian function H(q,p,t).

• We may know a few constants of motion such as energy, 
momentum, number of particles, volume, ... 

• The most fundamental way to understand the foundation of 
statistical mechanics is by using quantum mechanics:
– In a finite system, there are a countable number of states with various 

properties, e.g. energy Ei.
– For each energy interval  we can define the density of states. 

g(E)dE = exp(S(E)/kB) dE,  where S(E) is the entropy.
– If all we know is the energy, we have to assume that each state in the 

interval is equally likely. (Maybe we know the momentum or another 
property)
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Environment

• Perhaps the system is isolated. No contact with outside 
world.  This is appropriate to describe a cluster in vacuum.

• Or  we have a heat bath: replace surrounding system with 
heat bath. All the heat bath does is occasionally shuffle the 
system by exchanging energy, particles, momentum,…..

The only distribution consistent with 
a heat bath is a canonical distribution:

( , )Prob( , ) /H q pq p dqdp e Z

See online notes/PDF derivation 
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Interaction with environment:  E= E1 + E2

• The number  of energy states in thermodynamic system (N ~ 1023) is 
very large! g(E) =density of states

• Combined density of states:  g(E) = gs(E1 ; Ns,Vs) ge(E-E1; Ne,Ve)

• Easier to use: ln g(E) = ln gs(E1) + ln ge(E-E1).

• This is the entropy S(E):  g(E) = eS(E)/k . (kB Boltzmann’s constant)

• The most likely value of E1 maximizes ln g(E). This gives 2nd law.
– Temperatures  of 1 and 2 the same:  =(kBT)–1 =d ln(g)/dE = dS/dE 

• Assuming that the environment has many degrees of freedom:    
Ps(E) = exp(- Es)/Z The canonical distribution.

<A> = Tr {P(E)A}/Z  

Physical system

EnvironmentExchange energy

E1
E2
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Statistical ensembles

• (E, V, N)  microcanonical, constant volume

• (T, V, N)  canonical,  constant volume

• (T, P N)   canonical, constant pressure

• (T, V , )  grand canonical (variable particle number)

• Which is best? It depends on:
– the question you are asking

– the simulation method: MC or MD (MC better for phase transitions)

– your code.

• Lots of work in recent years on various ensembles (later).
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Maxwell-Boltzmann Distribution

• Z is the partition function. Defined so that probability is normalized.

• Quantum expression : Z =  exp (- Ei )
• Also Z= exp(- F),  F=free energy (more convenient since F is extensive)

• Classically:    H(q,p)   =  V(q)+  p2
i /2mi

• Then the  momentum integrals can be performed. One has simply an 
uncorrelated Gaussian (Maxwell) distribution of momentum. 

• On the average, there is no relation between position and velocity!

• Microcanonical is different--think about harmonic oscillator.

• Equipartition Theorem: Each quadratic variable carries (1/2) kBT of 

energy        <p2
i /2mi>= (3/2)kB T

( , )Prob( , ) e /( ! )H q pq p dqdp N Z
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Thermodynamic limit

• To describe a macroscopic limit we need to study how 
systems converge as N  and as t  . 

• Sharp, mathematically well-defined phase transitions only 
occur in this limit. Otherwise they are not perfectly sharp.

• It has been found that systems of as few as 20 particles 
with only thousand of steps can be close to the limit if you 
are very careful with boundary conditions (spatial BC).

• To get this behavior consider whether:
– Have your BCs introduced anything that shouldn’t be there? 

(walls, defects, voids , etc)

– Is your box bigger than the natural length scale.  (for a liquid/solid 
it is the interparticle spacing)

– The system starts  (t=0) in a reasonable state (BC in time!).
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Ergodicity
• In MD we often use the microcanonical ensemble: just F=ma! E is 

conserved.
• Replace ensemble or heat bath with a SINGLE very long trajectory. 
• This is OK only if system is ergodic.

• Ergodic Hypothesis: a phase point for any isolated system passes in succession 
through every point compatible with the energy of the system before finally 
returning to its original position in phase space. (a Poincare cycle). 

• The, Ergodic hypothesis: each state consistent with our knowledge is 
equally “likely”.

– Implies the average value does not depend on initial conditions.
– Is <A>time= <A>ensemble a good estimator? <A> = (1/NMD) ∑t=1,N At 

– True if:  <A>= < <A>ens>time = <<A>time> ens = <A>time.
• Equality one is true if the distribution is stationary.
• For equality two, interchanging averages does not matter.
• The third equality is only true if system is ERGODIC.

• Are systems in nature really ergodic? Not always!
– Non-ergodic examples are glasses, folding proteins (in practice), harmonic 

crystals (in principle), the solar system.
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Different aspects of Ergodicity

• The system relaxes on a reasonable time scale towards a unique 
equilibrium state.

• This state is the microcanonical state. It differs from the canonical 
distribution by corrections of order (1/N).

• There are no hidden variable (conserved quantities) other than the 
energy, linear and angular momentum, number of particles. (systems 
which do have conserved quantities might be integrable.)

• Trajectories wander irregularly through the energy surface, eventually 
sampling all of accessible phase space.

• Trajectories initially close together separate rapidly. They are 
extremely sensitive to initial conditions; the “butterfly effect.” The 
coefficient is the Lyapunov exponent.

Ergodic behavior makes possible the use of statistical methods on MD 
of small systems. Small round-off errors and other mathematical 
approximations may not matter! They may even help.
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Particle in a smooth/rough circle
From J.M. Haile: MD Simulations
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Fermi- Pasta- Ulam “experiment” (1954) 
• 1-D anharmonic chain:  V= [(q i+1- q i)2 +  (q i+1 - q i)3]

• The system was started out with energy with the lowest energy mode. 
=> Equipartition implies that energy would flow into the other modes.

• Systems at low temperatures never come into equilibrium. 
The energy sloshes back and forth between various modes forever. 

• At higher temperature many-dimensional systems become ergodic. 

• The field  of non-linear dynamics is devoted to these questions.
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Let us say here that the results of our computations were, 
from the beginning, surprising us. Instead of a continuous 
flow of energy from the first mode to the higher modes, all 
of the problems show an entirely different behavior. … 
Instead of a gradual increase of all the higher modes, the 
energy is exchanged, essentially, among only a certain 
few. It is, therefore, very hard to observe the rate of 
“thermalization” or mixing in our problem, and this was 
the initial purpose of the calculation.

Fermi, Pasta, Ulam (1954)
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Distribution of normal modes.

High energy  (E=1.2) Low energy  (E~0.07)
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• 20K steps

• 400K steps

•Energy SLOWLY oscillates 
from mode to mode--never 
coming to equilibrium

Distribution of normal modes vs time-steps
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Aside from these mathematical questions, there is always a 
practical question of convergence. 

How do you judge if your results converged?

There is no sure way. Why? 

There are only “experimental” tests for convergence such as:
– Occasionally do very long runs.

– Use different starting conditions. For example “quench” from 
higher temperature/higher energy states.

– Shake up the system.

– Use different algorithms such as MC and MD

– Compare to experiment or to another well-studied system.
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