Scalar Properties, Static Correlations and Order Parameters

What do we get out of a simulation?

- Static properties: pressure, specific heat, etc.
- Density
- Pair correlations in real space and Fourier space.
- Order parameters and broken symmetry: how to tell a liquid from a solid
- *Dynamical properties* – next lecture

Thermodynamic properties

We can get averages over distributions

- Total (internal) energy $= \frac{1}{2} k_B T$ per momentum (degree of freedom)
- Specific heat $= \text{mean squared fluctuation in energy}$
- Pressure can be computed from the *virial theorem*.
- Compressibility, bulk modulus, sound speed

We have problems with entropy and free energy because they are not ratios with respect to the Boltzmann distribution. We will discuss this in a few weeks.
Thermodynamic Estimators

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinetic Energy</td>
<td>$K = \frac{m dF}{dm}$</td>
<td>$\frac{1}{2} \sum_i m_i v_i^2 = \frac{1}{2} k_B T \times \text{(degrees of freedom)}$</td>
</tr>
<tr>
<td>Potential Energy</td>
<td>U</td>
<td>$\sum_{i<j} \phi(r_{ij}) = \frac{N}{2} \int d^3r \phi(r) g(r)$</td>
</tr>
<tr>
<td>Pressure</td>
<td>$P = -\frac{\delta F}{\delta N}$</td>
<td>$\frac{1}{2 \Omega} \left[2K - \sum_{i<j} r_{ij} \frac{\delta^2 \phi}{\delta r_{ij}^2} \right] = \frac{k_B T}{\Omega} - \frac{\rho^2}{6} \int d^3 r g(r) r \frac{\delta^2 \phi}{\delta r^2}$</td>
</tr>
<tr>
<td>Specific Heat</td>
<td>$C_V = \frac{\delta F}{\delta T}$</td>
<td>$\frac{1}{(k_B T)^2} \left[\langle E - \langle E \rangle \rangle^2 \right] = \frac{3}{2} N + \frac{1}{(k_B T)^2} \left[\langle V^2 \rangle - \langle V \rangle^2 \right]$</td>
</tr>
</tbody>
</table>

Pressure: remember virial theorem

Microscopic Density

In Real-Space:

$$\rho(r) = \langle \sum_i \delta(r-r_i) \rangle$$

Its Fourier transform:

$$\rho_k = \langle \sum_i \exp(i k r_i) \rangle$$

This is a good way to smooth the density.

- A solid has broken symmetry (order parameter): *density is not constant.*
- At a liquid-gas transition, the density is also inhomogeneous.

- In periodic boundary conditions the k-vectors are on a grid: $\mathbf{k} = (2\pi/L) \cdot (n_x, n_y, n_z)$ Long wavelength modes are absent.

- **In a solid, Lindemann’s ratio gives a rough idea of melting:**

 $$u^2 = \langle (r_i - z_i)^2 \rangle / d^2$$

 When deviations about lattice are greater than ~15%, the solid has melted.
Order parameters

• Systems have symmetries: e.g. translation invariance.
 – At high T, one expects the system to have those same symmetries at
 the microscopic scale (e.g., a gas).
 – BUT, as the system cools, those symmetries can be broken
 (e.g., a gas condenses or freezes).
 – The best way to monitor the transition is to look at how the order
 parameter changes during the simulation.

Examples:
• At a liquid gas-transition, density no longer fills the volume:
 droplets form. The density is the order parameter.
• At a liquid-solid transition, both rotational and translational
 symmetry are broken.

1/31/2013
Electron Density
2d quantum electron Wigner crystal

Contour levels are 0.0005, 0.001, 0.002, 0.004, 0.008

Snapshots of densities

Liquid or crystal or glass?

Blue spots are defects
Density Distribution of $^4\text{He}+(\text{HCN})_x$ Droplets

T=0.38 K, N=500

Pair Correlation Function: $g(r)$
Radial distribution function: rdf
Density-Density correlation function

Primary quantity in a liquid is the probability distribution of pairs of particles. What is the density of atoms around a given atom?

$$g(r) = \langle \sum_{i<j} \delta(r - |r_i - r_j|) \rangle \left(\frac{2\Omega}{N^2}\right)$$

- In practice, the delta-function is replaced by binning and making a histogram.

From $g(r)$ you can calculate all pair quantities (potential, pressure, …):

$$V = \sum_{i<j} V(r_{ij}) = \frac{N\rho}{2} \int d^3r \, v(r) g(r)$$

A function gives more information than a number!
! Loop over all pairs of atoms.
do i=2,natoms
do j=1,i-1
!Compute distance between i and j.
r2 = 0
do k=1,ndim
 dx(k) = r(k,i) - r(k,j)
!Periodic boundary conditions.
 if(dx(k).gt. ell2(k)) dx(k) = dx(k)-ell(k)
 if(dx(k).lt.-ell2(k)) dx(k) = dx(k)+ell(k)
 r2 = r2 + dx(k)*dx(k)
enddo
!Only compute for pairs inside radial cutoff.
if(r2.lt.rcut2) then
 index=sqrt(r2)*dr_inverse
 g(index)=g(index)+1
endif
endo
do i=2,natoms
do j=1,i-1
!Compute distance between i and j.
r2 = 0
do k=1,ndim
 dx(k) = r(k,i) - r(k,j)
!Periodic boundary conditions.
 if(dx(k).gt. ell2(k)) dx(k) = dx(k)-ell(k)
 if(dx(k).lt.-ell2(k)) dx(k) = dx(k)+ell(k)
 r2 = r2 + dx(k)*dx(k)
enddo
!Only compute for pairs inside radial cutoff.
if(r2.lt.rcut2) then
 index=sqrt(r2)*dr_inverse
 g(index)=g(index)+1
endif
endo

Also need to normalize and output at the end of a block.

All of this is the same.
Do g(r) when F is calculated!

How do we choose dr_inverse?

New code

Example: g(r) in liquid and solid helium

- **Exclusion hole around the origin**
- **First peak** is at inter-particle spacing, (shell around the particle)
- **Only can go out to** \(r < L/2 \) in periodic boundary conditions without bringing in images.
- **Crystal shows up as shoulders**
Pair correlation in water

α is angle between dipoles

1/31/2013

$g(r)$ for fcc and bcc lattices

1st neighbor
2nd neighbor
3rd neighbor
distances are arranged in increasing distances.

What happens at finite T?
What happens when potentials are not hard spheres?

1/31/2013

J. Haile, MD simulations
The (Static) Structure Factor: $S(k)$

- The *Fourier transform of $g(r)$* is the *static structure factor*:
 \[S(k) = \frac{<|\rho_k|^2>}{N} \]
 \[S(k) = 1 + \rho \int dr \exp(ikr) [g(r)-1] \]

- Problems with (2):
 - Need to extend $g(r)$ to infinity
 - Need to calculate 3D $g(r)$.

Why is $S(k)$ important? $S(k)$ can:

- Be measured in neutron and X-ray scattering experiments.
- Provide a direct test of the assumed potential.
- Use to see the state of a system:
 - *liquid, solid, glass, gas (much more precise than $g(r)$)*
- Order parameter in a solid is ρ_G where G is a particular wavevector.
S(K) is measured in x-ray and neutron scattering

- In a perfect lattice, S(k) is non-zero only at reciprocal lattice vectors G: S(G) = N.
- At non-zero temperature (or for quantum systems) this structure factor is reduced by the Debye-Waller factor
 \[S(G) = 1 + (N-1)\exp(-G^2q^2/3) \]
- To tell a liquid from a crystal, see how S(G) scales as the system is enlarged. In a solid, S(G) will have peaks that scale with the number of atoms.

- The compressibility is given by:
 \[\chi_T = \frac{S(0)}{k_B T \rho} \]
- We can use this to detect a liquid-gas transition: the compressibility should diverge as k \to 0
Here is a snapshot of a binary mixture. What correlation function would be important to decide the order?

What is the order parameter for a glass? How to distinguish it from a liquid or from a crystal?

Next time: dynamical correlations