The Ising Model

Today we will switch topics and discuss one of the most studied models in statistical physics the **Ising Model**

- Some applications:
 - Magnetism (the original application)
 - Liquid-gas transition
 - Binary alloys (can be generalized to multiple components)
- Onsager solved the 2D square lattice (1D is easy!)
- Used to develop *renormalization group theory* of phase transitions in 1970's.
- Critical slowing down and "cluster methods".

Figures from Landau and Binder, MC Simulations in Statistical Physics, 2000 (LB)

Why should you care?

Why should you care?

1. Prototypical model of phase transitions

Why should you care? 1. Prototypical 2. Map to many model of phase

MSE Physics Ilinois

transitions

©D.D. Johnson and D. Ceperley 2007

other systems

(gas, etc.)

Why should you care?

1. Prototypical model of phase transitions

2. Map to many other systems (gas, etc.)

3. Techniques critical to other simulations.

Each lattice site has a single spin variable: $s_i = \pm 1$.

 $\langle i,j \rangle$ i

3

Atomicale MSE485/PHY466/CSE485

MULATION

- Each lattice site has a single spin variable: s_i = ±1.
- with magnetic field h

- Each lattice site has a single spin variable: $s_i = \pm 1$.
- with magnetic field ${\boldsymbol{h}}$
- J is the nearest neighbors (i,j) coupling:
 - If J>0, ferromagnetic
 - If J<0, antiferromagnetic

MSE

Physics Ilinois

- Each lattice site has a single spin variable: $s_i = \pm 1$.
- with magnetic field ${\boldsymbol{h}}$
- J is the nearest neighbors (i,j) coupling:
 - If J>0, ferromagnetic
 - If J<0, antiferromagnetic
 - •Picture of spins at the critical temperature T_c . (Note the connected (percolated) clusters.)

 $H = -J\sum_{\langle i,j\rangle} s_i \cdot s_j + \sum_i h \cdot s_i$

 $\langle i,j \rangle$

Physics Ilinois

MSE

- Each lattice site has a single spin variable: $s_i = \pm 1$.
- with magnetic field **h**
- J is the nearest neighbors (i,j) coupling:
 - If J>0, ferromagnetic
 - If J<0, antiferromagnetic
 - Picture of spins at the critical temperature T_c . (Note the connected (percolated) clusters.)

867

• **High-T phase:** spins are random (uncorrelated).

- High-T phase: spins are random (uncorrelated).
- T > T_c phase near T_c: spins are random but correlated: magnetic short-range (local) order.

- High-T phase: spins are random (uncorrelated).
- T > T_c phase near T_c: spins are random but correlated: magnetic short-range (local) order.
- Low-T (T~0) phase: spins are aligned (fully correlated).

Magnetization: 52

 $m(r) = \langle s(r) \rangle$

• Magnetization: 52 $m(r) = \langle s(r)
angle$

Magnetization squared (why?)

$$m^2(r) = \langle s^2(r) \rangle$$

• Magnetization: 52 $m(r) = \langle s(r)
angle$

Magnetization squared (why?)

$$m^2(r) = \langle s^2(r) \rangle$$

• Magnetic Susceptibility $\frac{dm(r)}{dh(r')}|_{h\to 0} = \beta \chi(r-r')$

• Magnetization: 52 $m(r) = \langle s(r)
angle$

Magnetization squared (why?)

$$m^2(r) = \langle s^2(r) \rangle$$

- Magnetic Susceptibility $\frac{dm(r)}{dh(r')}|_{h\to 0} = \beta \chi(r-r')$
- Correlation functions

 $\chi(r-r') = \langle s(r)s(r') \rangle - \langle s(r) \rangle \langle s(r') \rangle$

MSF

Physics Ilinois

- Magnetization: 52 $m(r) = \langle s(r)
 angle$
- Magnetization squared (why?)

$$m^2(r) = \langle s^2(r) \rangle$$

- Magnetic Susceptibility $\frac{dm(r)}{dh(r')}|_{h\to 0} = \beta \chi(r-r')$
- Correlation functions

 $\chi(r - r') = \langle s(r)s(r') \rangle - \langle s(r) \rangle \langle s(r') \rangle$

• Dynamics?

PHASE TRANSITIONS

Phase Transitions

- Concepts and understanding are universal. Apply to all phase transitions of similar type.
- Order parameter is *average* magnetization
- Let's understand phases:
 - Change T (H=0)
 - Bigger => sharper transition
 - Second order $|M| vs. 1/\beta J$ for varying L

Second Order Phase Transitions

• Critical Point! and Universal Scaling!

MSE

Physics

- In ordered phase, spin is correlated over long distance.
- At critical point, fluctuations of all scales.

Fig. 4.1 Typical spin configurations for the two-dimensional Ising square lattice: (left) $T \ll T_c$; (center) $T \sim T_c$; (right) $T \gg T_c$.

Magnetization Scaling depends on T: $M \propto (T_c - T)^{\beta}$ for T < T_c</td> $\beta = 0.125$ for D=2. $\beta = 0.325$ for D=3.

1'st order phase diagrams

- A *first-order transition* (where there is a discontinuous jump in M) occurs as H passes through zero for T<T_c.
- Similar to LJ phase diagram. Magnetic field=pressure.

MAPPING TO OTHER MODELS

Mapping liquid-gas to Ising

 For *liquid-gas* transition let n(r) be the density at lattice site r and have two values n(r)=(0,1).

$$E = \sum_{(i,j)} v_{ij} n_i n_j + \mu \sum_i n_i$$

• Let's map this into the Ising model spin variables:

$$s = 2n - 1 \quad \text{or} \quad n = \frac{1}{2} \left(s + 1 \right)$$

$$H = \frac{v}{4} \sum_{i,j} s_i s_j + \frac{\left(v + \mu \right)}{2} \sum_i s_i + c$$

$$J = -v / 4$$

$$h = -\left(v + \mu \right) / 2$$

$$M = \frac{1}{N} \sum_i s_i \qquad \left\langle n \right\rangle = \frac{1}{N} \sum_i n_i = \frac{1}{2} \left(M + 1 \right)$$

Surfaces/Boundary Conditions

- By quenching quickly we may catch a "trapped" surface.
- Topological excitation.
- You can see steps, etc.

Physics

- Can use *twisted boundary conditions* to study a liquid-gas surface without worrying about it disappearing.
- Just put -J along one plane (side). Antiferromagnetic interaction along one plane.

$$H = -\sum_{(i,j)} J_{ij} S_i S_j$$
$$J_{ij} = \begin{cases} J & i \neq 0\\ -J & i = 0 \end{cases}$$

Spinoidal decomposition

Suppose spin flips only locally.

- Model for phase separation such as a binary "alloy" (oil and vinegar).
- Dynamics depends on whether the spin is conserved
 - Spin flip (left)
 - Spin exchange (right). conserves particle number
- Transition appears through a coarsening of the separation.
- Becomes slower and slower as the transition proceeds.
 - Critical Slowing down.

MSF

Physics Ilinois

SIMULATIONS

Simulations

- "Naive Metropolis"
- Heat Bath
- Kawaski Dyamics
- Kinetic Monte Carlo
- Cluster Moves
 - Wolff
 - Swedsen
- Worm Algorithms

Being pedantic MC does integrals of the form $I(x) = \frac{1}{S} \int p(x)O(x)dx$

where
$$S = \int p(x) dx$$

Physics Ilinois

We want
$$M^2(x) = \frac{1}{Z} \int \exp(-\beta J \sum_{\langle i,j \rangle} s_i s_j) \sum_i s_i^2 di$$

where $Z = \int \exp(-\beta J \sum_{\langle i,j \rangle} s_i s_j) di$

So... we need to sample a configuration of spins with probability $\exp(-\beta J \sum_{\langle i,j \rangle} s_i s_j)$ using monte carlo

So... we need to sample a configuration of spins with probability $\exp(-\beta J \sum_{\langle i,j \rangle} s_i s_j)$ using monte carlo

MSF

Physics Ilinois

Naive Metropolis

- Choose a spin at random
- Flip this spin

- Choose a spin at random
- Flip this spin

• Calculate
$$\Delta E = J \sum_{\langle i,j \rangle} s_i s_j$$

Choose a spin at random

Flip this spin

• Calculate
$$\Delta E = J \sum_{\langle i,j \rangle} s_i s_j$$

Accept with probability

$$P_{\text{accept}} = min \left\{ 1, \exp(-\beta \Delta E) \frac{T(n \to o)}{T(o \to n)} \right\}$$

©D.D. Johnson and D. Ceperley 2007

I Mase Physics Physics

✓ Choose a spin at random
Define:
p_r = exp(-βJs_r(s_r + s_r + s_b + s_r))
p_b = exp(-βJs_b(s_r + s_r + s_b + s_r))

- Choose a spin at random
- Define:
- $p_r = \exp(-\beta J s_r (s_r + s_r + s_b + s_r))$
- $p_b = \exp(-\beta J s_b (s_r + s_r + s_b + s_r))$
- Make this spin

18

SE485

Atomicale MSE485/PHY4

MULATION

• Choose a spin at random • Define: $p_r = \exp(-\beta J s_r (s_r + s_r + s_b + s_r))$

$$p_b = \exp(-\beta J s_b (s_r + s_r + s_b + s_r))$$

- Make this spin
 - red: Probability

$$\frac{p_r}{p_r + p_b}$$

• Choose a spin at random • Define: $p_r = \exp(-\beta J s_r (s_r + s_r + s_b + s_r))$ $p_b = \exp(-\beta J s_b (s_r + s_r + s_b + s_r))$

Atomic LeMSE485/PH

- Make this spin
 - red: Probability

$$\frac{p_r}{p_r + p_b}$$

$$\frac{p_b}{p_r + p_b}$$

SE485

blue: Probability

Physics Ilinois

MSE

- Choose a spin at random
 Define: p_r = exp(-βJs_r(s_r + s_r + s_b + s_r)) p_b = exp(-βJs_b(s_r + s_r + s_b + s_r))
- Make this spin
 red: Probability

$$\frac{p_r}{p_r + p_b}$$

SE485

$$\frac{p_b}{p_r + p_b}$$

- blue: Probability
- Accept with probability

$$P_{\text{accept}} = min \left\{ 1, \exp(-\beta \Delta E) \frac{T(n \to o)}{T(o \to n)} \right\}$$

©D.D. Johnson and D. Ceperley 2007

©D.D. Johnson and D. Ceperley 2007

Choose group of spins at random

 Define p_{rrrr} and Z as per heat bath algorithm

Choose group of spins at random

 Define p_{rrrr} and Z as per heat bath algorithm

Choose group of spins at random

- Define p_{rrrr} and Z as per heat bath algorithm
- Make this spin
 - rrrr: p_{rrrr} /Z
 - rrrb: p_{rrrb} /Z
 - rrbb: p_{rrbb} /Z
 - rbrr: p_{rbrr}/Z
 - ..

MSE

Physics

Choose group of spins at random

- Define p_{rrrr} and Z as per heat bath algorithm
- Make this spin
 - rrrr: p_{rrrr} /Z
 - rrrb: p_{rrrb} /Z
 - rrbb: p_{rrbb} /Z
 - rbrr: p_{rbrr}/Z
 - ..
- Accept with probability

$$P_{\text{accept}} = \min\left\{1, \frac{\pi_{\text{new}}}{\pi_{\text{old}}} \frac{T(n \to o)}{T(o \to n)}\right\}$$

©D.D. Johnson and D. Ceperley 2007

• Simulating a constant spin system

Simulating a constant spin system
 spinoidal decomposition

- Simulating a constant spin system
 spinoidal decomposition
- Previous algorithms don't work!

- Simulating a constant spin system
 spinoidal decomposition
- Previous algorithms don't work!
- Select a random spin and it's neighbor

- Simulating a constant spin system
 spinoidal decomposition
- Previous algorithms don't work!
- Select a random spin and it's neighbor
- Exchange spins

- Simulating a constant spin system
 spinoidal decomposition
- Previous algorithms don't work!
- Select a random spin and it's neighbor
- Exchange spins
- Accept or reject

$$P_{\text{accept}} = \min\left\{1, \frac{\pi_{\text{new}}}{\pi_{\text{old}}} \frac{T(n \to o)}{T(o \to n)}\right\}$$

Physics Ilinois

MSE

©D.D. Johnson and D. Ceperley 2007

• Not as "rigorous" a footing as other methods

- Not as "rigorous" a footing as other methods
- Really low temperature, things evolve slowly since no one wants to flip.

- Not as "rigorous" a footing as other methods
- Really low temperature, things evolve slowly since no one • wants to flip. In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i,j \rangle} s_i s_j\right)$

- Not as "rigorous" a footing as other methods ۲
- Really low temperature, things evolve slowly since no one • wants to flip. In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i,j \rangle} s_i s_j\right)$

- Not as "rigorous" a footing as other methods
- Really low temperature, things evolve slowly since no one • wants to flip. In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i,j \rangle} s_i s_j\right)$

- Not as "rigorous" a footing as other methods ۲
- Really low temperature, things evolve slowly since no one • wants to flip. In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i,j \rangle} s_i s_j\right)$

- Not as "rigorous" a footing as other methods
- Really low temperature, things evolve slowly since no one • wants to flip. In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i,j \rangle} s_i s_j\right)$ wants to flip.
- In KMC, choose a site i to flip with probability $\frac{p_i}{\sum_i p_i}$ and assume that $-\frac{\ln U}{\sum_i p_i}$ time has passed.

$$P_1 = \frac{e^{-10}}{25e^{-10}} = \frac{1}{25}$$

Time passed: 344

©D.D. Johnson and D. Ceperley 2007

- Not as "rigorous" a footing as other methods
- Really low temperature, things evolve slowly since no one wants to flip.
- In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i \rangle i \rangle} s_i s_j\right)$
- In KMC, choose a site i to flip with probability $\frac{p_i}{\sum_i p_i}$ and assume that $-\frac{\ln U}{\sum_i p_i}$ time has passed.
- Trick is doing this fast (N-Fold way, etc)

$$P_1 = \frac{e^{-10}}{25e^{-10}} = \frac{1}{25}$$

Physics

Time passed: 344

- Not as "rigorous" a footing as other methods
- Really low temperature, things evolve slowly since no one wants to flip.
- In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i,j \rangle} s_i s_j\right)$
- In KMC, choose a site i to flip with probability $\frac{p_i}{\sum_i p_i}$ and assume that $-\frac{\ln U}{\sum_i p_i}$ time has passed.
- Trick is doing this fast (N-Fold way, etc)
- Useful for gas adsorbtion, etc.

Physics

$$P_1 = \frac{e^{-10}}{25e^{-10}} = \frac{1}{25}$$

Time passed: 344

- Not as "rigorous" a footing as other methods
- Really low temperature, things evolve slowly since no one wants to flip.
- In metropolis, each site would flip with $p_i = \exp\left(-\beta \sum_{\langle i,j \rangle} s_i s_j\right)$
- In KMC, choose a site i to flip with probability $\frac{p_i}{\sum_i p_i}$ and assume that $-\frac{\ln U}{\sum_i p_i}$ time has passed.
- Trick is doing this fast (N-Fold way, etc)
- Useful for gas adsorbtion, etc.

$$P_1 = \frac{e^{-10}}{25e^{-10}} = \frac{1}{25}$$

Time passed: 344

©D.D. Johnson and D. Ceperley 2007

Speeding things up: Constants

Lots of tricks to make it run faster.

Metropolis importance sampling Monte Carlo scheme

- (1) Choose an initial state
- (2) Choose a site i
- (3) Calculate the energy change ΔE which results if the spin at site *i* is overturned
- (4) Generate a random number r such that 0 < r < 1
- (5) If $r < \exp(-\Delta E/k_B T)$, flip the spin
- (6) Go the next site and go to (3)

Calculating the magnetization on the fly!

Playing games with bit operations

Speeding things up: Constants

Lots of tricks to make it run faster.

Calculating the magnetization on the fly!

Playing games with bit operations

22

Speeding things up: Constants

Lots of tricks to make it run faster.

Calculating the magnetization on the fly!

Playing games with bit operations

Critical slowing down

P, (M)

+ P. (M)

√k_BTX/L^d [T>T_C]

T=T_c

- Near the transition dynamics gets very slow if you use any local update method.
- The larger the system the less likely it is that the system can flip over.

Metropolis importance sampling Monte Carlo scheme

- (1) Choose an initial state
- (2) Choose a site i

MSE

- (3) Calculate the energy change ΔE which results if the spin at site *i* is overturned
- (4) Generate a random number r such that 0 < r < 1
- (5) If $r < \exp(-\Delta E/k_{\rm B}T)$, flip the spin
- (6) Go the next site and go to (3)

Physics Ilinois Monte Carlo of a zero-field Ising Lattice U vs. time and M vs. time.

©D.D. Johnson and D. Ceperley 2007

Swendsen Algorithm

Swendsen Algorithm

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 - \exp(-2\beta J)$

Atomicale MSE485/PHY

MI

6/CSE485

ATION

Swendsen Algorithm

• For each same-spin bond: "Turn the bond purple" with $p_i = 1 - \exp(-2\beta J)$

Atomicale MSE485/PHY

MI

6/CSE485

ATION

Swendsen Algorithm

Swendsen Algorithm

• For each same-spin bond: "Turn the bond purple" with $p_i = 1 - \exp(-2\beta J)$

Atomicale MSE485/PHY

MI

6/CSE485

ATION

Swendsen Algorithm

For each same-spin bond: "Turn the bond purple" with $p_i = 1 - \exp(-2\beta J)$

MI

Swendsen Algorithm

Swendsen Algorithm

Swendsen Algorithm

Swendsen Algorithm

Swendsen Algorithm

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 \exp(-2\beta J)$
- For each cluster, assign it a random color.

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 \exp(-2\beta J)$
- For each cluster, assign it a random color.

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 \exp(-2\beta J)$
- For each cluster, assign it a random color.

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 \exp(-2\beta J)$
- For each cluster, assign it a random color.

Swendsen Algorithm

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 \exp(-2\beta J)$
- For each cluster, assign it a random color.

Momile MSE485/PH

• Accept with probability

SE485

Swendsen Algorithm

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 \exp(-2\beta J)$
- For each cluster, assign it a random color.
- Accept with probability

$$P_{\text{accept}} = min \left\{ 1, \exp(-\Delta E) \frac{T(n \to o)}{T(o \to n)} \right\}$$

Atomic JeMSE485/PH

SE485

Physics Ilinois

MSF

Swendsen Algorithm

- For each same-spin bond: "Turn the bond purple" with $p_i = 1 \exp(-2\beta J)$
- For each cluster, assign it a random color.
- Accept with probability

 $P_{\text{accept}} = \min\left\{1, \exp(-\Delta E)\frac{T(n \to o)}{T(o \to n)}\right\}$

• Can this work if h>0?

$$P_{ ext{accept}} = min\left\{1, \exp(-\Delta E)rac{T(n o o)}{T(o o n)}
ight\}$$
 $p_i = 1 - \exp(-2eta J)$

Physics Ilinois

Mars E Illinois

1867

$$P_{ ext{accept}} = min\left\{1, \exp(-\Delta E)rac{T(n o o)}{T(o o n)}
ight\}$$
 $p_i = 1 - \exp(-2eta J)$

Physics Illinois

Mars E Illinois

1867

©D.D. Johnson and D. Ceperley 2007

4 cases:1. We colored the bond purple!

$$P_{ ext{accept}} = min\left\{1, \exp(-\Delta E)rac{T(n o o)}{T(o o n)}
ight\}$$
 $p_i = 1 - \exp(-2eta J)$

Physics Illinois

Mars E Illinois

1867

4 cases:

1. We colored the bond purple!

2. Bond starts and ends both the same (or different)

$$P_{\text{accept}} = \min\left\{1, \exp(-\Delta E)\frac{T(n \to o)}{T(o \to n)}\right\}$$
$$p_i = 1 - \exp(-2\beta J)$$

Physics Illinois

MSE

Illinois

I 1867

4 cases:

1. We colored the bond purple!

2. Bond starts and ends both the same (or different)

3. old: diff color, new: same color

Atomic leMSE485/PH

>IM

6/CSE485

$$P_{\text{accept}} = \min\left\{1, \exp(-\Delta E)\frac{T(n \to o)}{T(o \to n)}\right\}$$
$$p_i = 1 - \exp(-2\beta J)$$

Physics Illinois

MSE

4 cases:1. We colored the bond purple!

2. Bond starts and ends both the same (or different)

3. old: diff color, new: same color $T(n \rightarrow o) = \exp(-2\beta J)$ $T(o \rightarrow n) = 1$ $\exp(-\Delta E) = \exp(2\beta J)$

Atomic JeMSE485/PH

6/CSE485

$$P_{
m accept} = min \left\{ 1, \exp(-\Delta E) rac{T(n o o)}{T(o o n)}
ight\}$$

 $p_i = 1 - \exp(-2\beta J)$

Physics Ilinois

MSE

4 cases:1. We colored the bond purple!

2. Bond starts and ends both the same (or different)

3. old: diff color, new: same color $T(n \rightarrow o) = \exp(-2\beta J)$ $T(o \rightarrow n) = 1$ $\exp(-\Delta E) = \exp(2\beta J)$

$$P_{\text{accept}} = \min\left\{1, \exp(-\Delta E)\frac{T(n \to o)}{T(o \to n)}\right\}$$
$$p_i = 1 - \exp(-2\beta J)$$

Physics Ilinois

MSF

4. new: diff color, old: same color

$$P_{\text{accept}} = \min\left\{1, \exp(-\Delta E)\frac{T(n \to o)}{T(o \to n)}\right\}$$
$$p_i = 1 - \exp(-2\beta J)$$

Physics Ilinois

MSF

4 cases:1. We colored the bond purple!

2. Bond starts and ends both the same (or different)

3. old: diff color, new: same color $T(n \rightarrow o) = \exp(-2\beta J)$ $T(o \rightarrow n) = 1$ $\exp(-\Delta E) = \exp(2\beta J)$

 $\begin{cases} 4. \text{ new: diff color, old: same color} \\ T(o \to n) = \exp(-2\beta J) \\ T(n \to o) = 1 \\ \exp(-\Delta E) = \exp(-2\beta J) \\ \frac{25}{25} \end{cases}$

Wolff Algorithm

$$p_i = 1 - \exp(-2\beta J)$$

$$p_i = 1 - \exp(-2\beta J)$$

Atomic Le MSE485/PHY466/CSE485

©D.D. Johnson and D. Ceperley 2007

Wolff Algorithm

• Choose a spin at random

$$p_i = 1 - \exp(-2\beta J)$$

$$p_i = 1 - \exp(-2\beta J)$$

Wolff Algorithm

- Choose a spin at random
 - Look at its same spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

$$p_i = 1 - \exp(-2\beta J)$$

Wolff Algorithm

- Choose a spin at random
- Look at its same spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

 Look at their same-spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

26

Wolff Algorithm

- Choose a spin at random
- Look at its same spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

 Look at their same-spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

26

Wolff Algorithm

- Choose a spin at random
- Look at its same spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

- Look at their same-spin neighbors and include them with probability $p_i = 1 \exp(-2\beta J)$
- Flip the cluster to opposite spin.

Cluster Algorithms

Wolff Algorithm

- Choose a spin at random
- Look at its same spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

- Look at their same-spin neighbors and include them with probability $p_i = 1 \exp(-2\beta J)$
- Flip the cluster to opposite spin.

Cluster Algorithms

MSF

Physics Ilinois

Wolff Algorithm

- Choose a spin at random
- Look at its same spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

 Look at their same-spin neighbors and include them with probability

$$p_i = 1 - \exp(-2\beta J)$$

- Flip the cluster to opposite spin.
- Accept with probability

$$P_{\text{accept}} = \min\left\{1, \exp(-\Delta E)\frac{T(n \to o)}{T(o \to n)}\right\}$$

The story so far

We need to calculate things like:

1867

$$Z = \sum_{\{s\}} \exp(-Ks_1s_2) \exp(-Ks_1s_3) \exp(-Ks_2s_3)$$

and
$$\langle M^2 \rangle = \frac{1}{Z} \sum_{\{s\}} (s_1 + s_2 + s_3)^2 \exp(-Ks_1s_2) \exp(-Ks_1s_3) \exp(-Ks_2s_3)$$

Need Mapping to p and O

Need Mapping to p and O

$$I(x) = \frac{1}{S} \sum p(x)O(x)dx$$

$$S = \sum p(x)dx$$

Need Mapping to p and O

WORM Algorithm

What we need is a different representation!

Have:
$$\sum_{s \in \{-1,1\}^{n \times n}} \exp(-Ks_1s_2) \exp(-Ks_1s_3) \exp(-Ks_2s_3) (\sum_i s_i)^2$$

What we need is a different representation!

Have:
$$\sum_{s \in \{-1,1\}^{n \times n}} \exp(-Ks_1s_2) \exp(-Ks_1s_3) \exp(-Ks_2s_3) (\sum_i s_i)^2$$

What we need is a different representation!

What we need is a different representation!

What we need is a different representation!

SE485

$\cosh(K)^{2^{n}} \sum_{\{s\}} (1 + s_{1}s_{2}\tanh(K))(1 + s_{1}s_{3}\tanh(K))(1 + s_{2}s_{3}\tanh(K))$

Sum over spins -> sum over bonds

$$\sum_{\{s\}} \exp(-Ks_1s_2) \exp(-Ks_1s_3) \exp(-Ks_2s_3) (\sum_i s_i)^2 \text{ Last slide:} \\ \cosh(K)(1 + s_1s_2 \tanh(K))(1 + s_1s_3 \tanh(K))(1 + s_2s_3 \tanh(K)))$$

$$\exp(-Ks_1s_2) \exp(-Ks_1s_3) \exp(-Ks_2s_3) (\sum_i s_i)^2 \exp(-Ks_1s_3) \exp(-Ks_2s_3) (\sum_i s_i)^2$$

Expand the square

$$\sum_{\text{terms}} \sum_{s \in \{-1,1\}^{n \times n}} (s_1 s_2) (s_1 s_3) \left[\tanh(K) \right]^2 (\sum_i s_i)^2$$

Expand the square

Expand the square

Represent visually

Let \hat{B} be the set of all bonds

$$\sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in \hat{B}} \exp(-Ks_u s_v) (\sum_i s_i)^2$$

Atomicale MSE485/PHY466/CSE485

©D.D. Johnson and D. Ceperley 2007

MSE

Physics Ilinois

MSE

Physics Ilinois Atomic de MSE485/PHY466/CSE485

 $I(x) = \frac{1}{S} \sum_{i=1}^{N} p(x) O(x) dx$

 $S = \sum p(x)dx$

 $I(x) = \frac{1}{S} \sum p(x)O(x)dx$

 $S = \sum p(x)dx$

Getting Z/S

 $\hat{M}^2 = \frac{M^2 Z}{S}$

Getting Z/S

 $\hat{M}^2 = \frac{M^2 Z}{S}$

$$I(x) = \frac{1}{S} \sum_{x \in V} p(x) O(x) dx$$

 $S = \sum p(x)dx$

$$\hat{M}^2 = \frac{M^2 Z}{S}$$

$$I(x) = \frac{1}{S} \sum p(x)O(x)dx$$

$$S = \sum p(x)dx$$

Want:

$$\frac{Z}{S} = \frac{1}{S} \sum_{B \in \hat{B}} \left[\tanh(K)^{|B|} \sum_{s} \prod_{uv \in B} s_u s_v \right] \quad S = \sum_{h,t,B \in \hat{B}} \tanh^{|B|} \sum_{s} \prod_{i \in B} s_u s_v (s_h s_t)$$

$$\hat{M}^2 = \frac{M^2 Z}{S}$$

$$I(x) = \frac{1}{S} \sum_{i=1}^{N} p(x)O(x)dx$$

$$S = \sum p(x)dx$$

$$\frac{Z}{S} = \frac{1}{S} \sum_{B \in \hat{B}} \left[\tanh(K)^{|B|} \sum_{s} \prod_{uv \in B} s_u s_v \right] \quad S = \sum_{h,t,B \in \hat{B}} \tanh^{|B|} \sum_{s} \prod_{i \in B} s_u s_v(s_h s_t)$$
$$\frac{Z}{S} = \frac{1}{S} \sum_{h,t,B \in \hat{B}} \left[\tanh(K)^{|B|} \sum_{s} \prod_{uv \in B} s_u s_v(s_h s_t) \right] \frac{\tanh(K)^{|B|} \sum_{s} \prod_{uv \in B} s_u s_v \delta_{h,t}}{\tanh(K)^{|B|} \sum_{s} \prod_{uv \in B} s_u s_v(s_h s_t)}$$

 $\hat{M}^2 = \frac{M^2 Z}{C}$

Getting M

• Calculate
$$\hat{M}^2 = \frac{M^2 Z}{S}$$
 and $\frac{Z}{S}$

• Still need to evaluate:

$$- \tanh(K)^{|B|} \sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in B} s_u s_v \delta_{h,t}$$

$$- \tanh(K)^{|B|} \sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in B} s_u s_v(s_h s_t)$$

 $\sum_{\{s\}} (s_1 s_2) (s_6 s_7) (s_{14} s_{15}) (s_{15} s_{20}) \left[\tanh(K) \right]^4 \delta_{h,t}$

 $\sum_{\{s\}} (s_1 s_2)(s_6 s_7)(s_{14} s_{15})(s_{15} s_{20}) \left[\tanh(K) \right]^4 \delta_{h,t} \qquad s \in \{-1,1\}^{n \times n} uv \in B$

 $\sum_{k=1}^{\infty} (s_1 s_2)(s_6 s_7)(s_{14} s_{15})(s_{15} s_{20}) \left[\tanh(K) \right]^4 \delta_{h,t} \qquad s \in \{-1,1\}^{n \times n} \ uv \in B$ $\{s\}$

$$(1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20}) + \\ (-1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20})$$

$$\sum_{\{s\}} (s_1 s_2) (s_6 s_7) (s_{14} s_{15}) (s_{15} s_{20}) [\tanh(K)]^4 \delta_{h,t} \sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in B} s_u s_v \delta_{h,t}$$

$$(1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20}) + \\ (-1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20})$$

$$\sum_{\{s\}} (s_1 s_2) (s_2 s_7) (s_7 s_6) (s_6 s_1) [\tanh(K)]^4$$

$$\sum_{\{s\}} (s_1 s_2) (s_6 s_7) (s_{14} s_{15}) (s_{15} s_{20}) [\tanh(K)]^4 \delta_{h,t} \qquad \sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in B} s_u s_v \delta_{h,t}$$

$$(1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20}) + \\ (-1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20})$$

$$\sum_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4$$

$$\sum_{\{s\}} (s_1 s_2) (s_6 s_7) (s_{14} s_{15}) (s_{15} s_{20}) [\tanh(K)]^4 \delta_{h,t} \qquad \sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in B} s_u s_v \delta_{h,t}$$

$$(1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20}) + \\ (-1) * \sum_{\{s-s_1\}} (s_2 s_6 s_7 s_{14} s_{20})$$

$$\sum_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4$$

$$\sum_{\{s\}} Conclusion:$$
"Even s" con

Conclusion: "Even s" contribute tanh(K)^{# of bonds}

(s7s8)

(s7s8)(s8s13)

(s7s8)(s8s13)(s13s12)

(s7s8)(s8s13)(s13s12)(s12s7)

(s7s8)(s8s13)(s13s12)(s12s7)

(s7s8)(s8s13)(s13s12)(s12s7) (s4s5)(s5s10)(s10s9)(s9s5)

$$\sum_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4 s_h s_t \sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in B} s_u s_v(s_h s_t)$$

Atomic Le MSE485/PHY466/CSE485

$$\sum_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4 s_h s_t$$

$$\sum_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4 s_h s_t$$
Even s: hd must equal tl

$$\sum_{\{s\}} (s_6 s_7) (s_7 s_{12}) (s_{12} s_{13} s_{13} s_{14}) \left[\tanh(K) \right]^4 (s_6 s_{14})$$

$$\lim_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4 s_h s_t$$

$$\lim_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4 s_h s_t$$
Even s: hd must equal tl
$$\sum_{\{s\}} (s_6 s_7)(s_7 s_{12})(s_{12} s_{13} s_{13}) s_{14} [\tanh(K)]^4 (s_6 s_{14})$$

$$\lim_{\{s\}} (s_6 s_7)(s_7 s_{12})(s_{12} s_{13} s_{13}) s_{14} [\tanh(K)]^4 (s_6 s_{14})$$

$$\lim_{\{s\}} (s_6 s_7)(s_7 s_{12})(s_1 s_{13} s_{13}) s_{14} [\tanh(K)]^4 (s_6 s_{14})$$

$$\sum_{\{s\}} (s_1 s_2)(s_2 s_7)(s_7 s_6)(s_6 s_1) [\tanh(K)]^4 s_h s_t \qquad \tanh(K)^{|B|} \sum_{s \in \{-1,1\}^{n \times n}} \prod_{uv \in B} s_u s_v(s_h s_t)$$

Even s: hd must equal tl
$$\sum_{\{s\}} (s_6 s_7)(s_7 s_{12})(s_{12} s_{13} s_{13}) [\tanh(K)]^4 (s_6 s_{14})$$

2 odd: hd and tl must cover them

> 2 odd: 0

©D.D. Johnson and D. Ceperley 2007

Atomic Le MSE485/PHY466/CSE485

s2

s2(s2s1)

s2(s2s1)(s1s6)

s2(s2s1)(s1s6)(s6s7)

s2(s2s1)(s1s6)(s6s7)(s7s12)

s2(s2s1)(s1s6)(s6s7)(s7s12)(s12s13)

s2(s2s1)(s1s6)(s6s7)(s7s12)(s12s13) s13

s2(s2s1)(s1s6)(s6s7)(s7s12)(s12s13) s13

(s7s8)(s8s13)(s13s12)(s12s7) (s4s5)(s5s10)(s10s9)(s9s5)

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2

We now need an algorithm that does monte carlo over these configurations!

- Choose a direction for the head.
- If the head "adds" a bond:
 - Accept w/ Pr min $\left(1, \tanh(K) \frac{T(n \to o)}{T(o \to n)}\right)$
- If the head "removes" a bond: • Accept w/ $\Pr \min \left(1, \frac{1}{\tanh(K)} \frac{T(n \to o)}{T(o \to n)}\right)$
- •If the head == tail:
 - •mv hd and tl to new spot
 - increment Z
- increment M2