Silicon Cluster Optimization Using Extended Compact Genetic Algorithm (ECGA)

Kumara Sastry Guanghua Xiao

University of Illinois at Urbana-Champaign {ksastry, gxiao}@uiuc.edu

December 12, 2000

Outline

- Motivation
- Overview of ECGA
- Marginal Product Models and BBs
- Silicon Potential
- Algorithm Implementation
- Results
- Conclusions

Motivation

- Existing algorithms use "not-so-good" operators
 - Proportionate selection
 - Single point crossover
- Increased interest in competent GAs
 - Solves hard problems quickly reliably and accurately
- An interesting competent GA is ECGA (Harik, 1999)
 - builds models of good data as linkage groups
- Cluster optimization is a NP-hard problem (Wille and Vennik, 1985)

Overview of ECGA

- Key Idea: Good probability distribution $\equiv Linkage$ learning
- Probability distribution: Marginal Product Models (MPM)
- Quantified based on *Minimum Description Length* (MDL)
- MDL Concept: Simpler distributions are better

Flowchart of Optimization Algorithm

Marginal Product Models

- Product of marginal distributions on a partition of genes
- Similar to CGA (Harik et. al;1998) and PBIL(Baluja;1994)
- Represent more than one gene in a partition
- Make exposition simpler
- Gene partition maps to linkage groups

Minimum Description Length Models

- Hypothesis: Good distributions are those for which
 - Representation of the distribution is minimum (model complexity, C_m).
 - Representation of population compressed is minimum (compressed population complexity, C_p).
- Penalize complex models
- Penalize inaccurate models
- Combined complexity, $C_c = C_m + C_p$

Building MPM using MDL

Uses a steepest ascent search:

- 1. Assume all the genes to be independent ([1],[2], \cdots ,[L]) and compute C_c .
- 2. Form all possible combinations $(N_{bb}(N_{bb}-1)/2)$ of merging two subsets. eg., $([1,2],[3],\cdots,[L]), \cdots, ([1],[2],[3],\cdots,[L-1,L])$.
- 3. Select the set with minimum combined complexity (C'_c) .
- 4. If $C_c > C'_c$ go to step 6.
- 5. Use the set with C'_c as the current MPM and go to step 2.
- 6. Merging is not possible, exit with set from step 2 as MPM.

Generation of New Population

- Transfer $N_p^*(1-P_c)$ best individuals to the next generation
- The rest $N_p * P_c$ individuals are generated as follows:
 - Take each of the subset of MPM from one of the individuals.
 - Similar to multiple point crossover.
 - Number of crossover points = N_{bb} .
 - Instead of two parents we have N_{bb} parents.

Silicon Potential

Gong Potential

- Gong, X.G. Phys. Rev. B 47, 2329 (1993)
- Empirical three body potential
- Based on Stillinger Weber potential
- Reflects both tetrahedral ($\sim 109^{\circ}$) and preferred bond angles ($\sim 60^{\circ}$)
- Accurate for predicting structural properties

Gong Potential: Equations

$$U_{\text{tot}} = \sum_{i < j}^{n} v_{2}(i, j) + \sum_{i < j < k}^{n} v_{3}(i, j, k)$$

$$v_{2}(i, j) = A \left(Br_{ij}^{-p} - r_{ij}^{-q} \right) \exp \left[(r_{ij} - a)^{-1} \right], \quad |r_{ij}| < a$$

$$v_{3}(i, j, k) = h \left(r_{ji}, r_{ki} \right) + h \left(r_{kj}, r_{ij} \right) + h \left(r_{ik}, r_{jk} \right)$$

$$h \left(r_{ji}, r_{ki} \right) = \frac{\lambda \exp \left[\gamma \left((r_{ij} - a)^{-1} + (r_{ki} - a)^{-1} \right) \right]}{\left(\cos \theta_{jik} + \frac{1}{3} \right)^{2} \left[(\cos \theta_{jik} + c_{0})^{2} + c_{1} \right], \quad |r_{ki}| < a$$

- A = 7.0496, B = 0.6022, a = 1.8, p = 4, q = 0.
- $\lambda = 25$, $\gamma = 1.2$, $c_0 = -0.5$, $c_1 = 0.45$

Algorithm Implementation

- Variables are fixed-space Cartesian coordinates
- Each coordinate is encoded by 5-bit binary
- 25 independent runs, $p_c = 0.8$, 4-11 atoms
- Nelder-Mead simplex: Press et al
- Termination criteria:
 - Fitness variance ≤ 0.1
 - Population variance ≤ 0.1
- At most one failure allowed

Results: Optimal Structures

Results: Population Size

Average Case: $O(n^{0.7})$, Worst Case: O(n).

Results: Convergence Time

Results: Function Evaluation

Average Case: $O(n^{1.3})$, Worst Case: $O(n^{1.7})$.

Conclusions

- Optimal structures of small Si clusters found
- Results agree with literature (Iwamtsu, M. J. Chem. Phy. 112 (2000))
- Convergence is very fast (≤ 25 generations).
- Population size increases linearly with cluster size
- Polynomial increase of function evaluation
- Results to be confirmed with bigger clusters