Bibliography

1
Alessandro Trovarelli.
Catalysis By Ceria and Related Materials.
Catalytic Science Series. Imperial College Press, 2002.

2
M Battelle and J R Hague.
Refractory ceramics for aerospace : a materials selection handbook / [by the] Battelle Memorial Institute ; Compiled and edited by J. R. Hague... [et al.].
American Ceramic Society, Columbus, Ohio, 1964.

3
R. J. M. Konings, K. Bakker, J. G. Boshoven, R. Conrad, and H. Hein.
The influence of neutron irradiation on the microstructure of Al2O3, MgAl2O4, Y3Al5O12 and CeO2.
Journal of Nuclear Materials, 254(2-3):135-142, 1998.

4
T. Sonoda, M. Kinoshita, Y. Chimi, N. Ishikawa, M. Sataka, and A. Iwase.
Electronic excitation effects in CeO2 under irradiations with high-energy ions of typical fission products.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 250(1-2):254-258, 2006.

5
K. Yasunaga, K. Yasuda, S. Matsumura, and T. Sonoda.
Nucleation and growth of defect clusters in CeO2 irradiated with electrons.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 250(1-2):114-118, 2006.

6
T. Sonoda, M. Kinoshita, N. Ishikawa, M. Sataka, Y. Chimi, N. Okubo, A. Iwase, and K. Yasunaga.
Clarification of the properties and accumulation effects of ion tracks in CeO2.
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266(12-13):2882-2886, 2008.

7
Licia Minervini, Matthew O. Zacate, and Robin W. Grimes.
Defect cluster formation in M2O3-doped CeO2.
Solid State Ionics, 116(3-4):339-349, 1999.

8
R. N. Blumenthal, F. S. Brugner, and J. E. Garnier.
The electrical conductivity of cao-doped nonstoichiometric cerium dioxide from 700[degree] to 1500[degree]c.
Journal of The Electrochemical Society, 120(9):1230-1237, 1973.

9
C. R. A. Catlow.
Fission gas diffusion in uranium dioxide.
Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 364(1719):473-497, 1978.

10
R. A. Jackson, A. D. Murray, J. H. Harding, and C. R. A. Catlow.
The calculation of defect parameters in uo2.
Philosophical Magazine A, 53(1):27-50, 1986.

11
P. Sindzingre and M. J. Gillan.
A molecular dynamics study of solid and liquid uo 2.
Journal of Physics C: Solid State Physics, 21(22):4017, 1988.

12
R. W. Grimes and C. R. A. Catlow.
The stability of fission products in uranium dioxide.
Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 335(1639):609-634, 1991.

13
T. Karakasidis and P. J. D. Lindan.
A comment on a rigid-ion potential for uo 2.
Journal of Physics: Condensed Matter, 6(15):2965, 1994.

14
Kazuhiro Yamada, Ken Kurosaki, Msayoshi Uno, and Shinsuke Yamanaka.
Evaluation of thermal properties of uranium dioxide by molecular dynamics.
Journal of Alloys and Compounds, 307(1-2):10-16, 2000.

15
C. B. Basak, A. K. Sengupta, and H. S. Kamath.
Classical molecular dynamics simulation of uo2 to predict thermophysical properties.
Journal of Alloys and Compounds, 360(1-2):210-216, 2003.

16
L. Van Brutzel, J.M. Delaye, D. Ghaleb, and M. Rarivomanantsoa.
Molecular dynamics studies of displacement cascades in the uranium dioxide matrix.
Philosophical Magazine, 83(36):4083-4101, 2003.

17
N.D. Morelon, D. Ghaleb, J.M. Delaye, and L. Van Brutzel.
A new empirical potential for simulating the formation of defects and their mobility in uranium dioxide.
Philosophical Magazine, 83(13):1533-1555, 2003.

18
C. Meis and A. Chartier.
Calculation of the threshold displacement energies in uo2 using ionic potentials.
Journal of Nuclear Materials, 341(1):25-30, 2005.

19
K. Govers, S. Lemehov, M. Hou, and M. Verwerft.
Comparison of interatomic potentials for uo2. part i: Static calculations.
Journal of Nuclear Materials, 366(1-2):161-177, 2007.

20
K. Govers, S. Lemehov, M. Hou, and M. Verwerft.
Comparison of interatomic potentials for uo2: Part ii: Molecular dynamics simulations.
Journal of Nuclear Materials, 376(1):66-77, 2008.

21
B. G. Dick and A. W. Overhauser.
Theory of the dielectric constants of alkali halide crystals.
Physical Review, 112(Copyright (C) 2010 The American Physical Society):90, 1958.
PR.

22
A. Gotte, D. SpĂ„ngberg, K. Hermansson, and M. Baudin.
Molecular dynamics study of oxygen self-diffusion in reduced ceo2.
Solid State Ionics, 178(25-26):1421-1427, 2007.

23
Thi X. T. Sayle, Stephen C. Parker, and C. R. A. Catlow.
Surface oxygen vacancy formation on ceo2 and its role in the oxidation of carbon monoxide.
Journal of the Chemical Society, Chemical Communications, pages 977 - 978, 1992.

24
Da Yu Wang, D. S. Park, J. Griffith, and A. S. Nowick.
Oxygen-ion conductivity and defect interactions in yttria-doped ceria.
Solid State Ionics, 2(2):95-105, 1981.

25
R. Gerhardt-Anderson and A. S. Nowick.
Ionic conductivity of ceo2 with trivalent dopants of different ionic radii.
Solid State Ionics, 5:547-550, 1981.

26
J. A. Kilner and R. J. Brook.
A study of oxygen ion conductivity in doped non-stoichiometric oxides.
Solid State Ionics, 6(3):237-252, 1982.

27
J. A. Kilner and C. D. Waters.
The effects of dopant cation-oxygen vacancy complexes on the anion transport properties of non-stoichiometric fluorite oxides.
Solid State Ionics, 6(3):253-259, 1982.

28
V. Butler, C. R. A. Catlow, B. E. F. Fender, and J. H. Harding.
Dopant ion radius and ionic conductivity in cerium dioxide.
Solid State Ionics, 8(2):109-113, 1983.

29
J. A. Kilner.
Fast anion transport in solids.
Solid State Ionics, 8(3):201-207, 1983.

30
A. D. Murray, G. E. Murch, and C. R. A. Catlow.
A new hybrid scheme of computer simulation based on hades and monte carlo: Application to ionic conductivity in y3+ doped ceo2.
Solid State Ionics, 18-19(Part 1):196-202, 1986.

31
Rojana Pornprasertsuk, Panchapakesan Ramanarayanan, Charles B. Musgrave, and Fritz B. Prinz.
Predicting ionic conductivity of solid oxide fuel cell electrolyte from first principles.
Journal of Applied Physics, 98(10):103513-8, 2005.

32
Julian D. Gale and Andrew L. Rohl.
The general utility lattice program (gulp).
Molecular Simulation, 29(5):291 - 341, 2003.

33
N. F. Mott and M.J. Littleton.
Conduction in polar crystals. i. electrolytic conduction in solid salts.
Transactions of the Faraday Society, 34:485 - 499, 1938.

34
Chaitanya S. Deo, Maria A. Okuniewski, Srinivasan G. Srivilliputhur, Stuart A. Maloy, Michael I. Baskes, Michael R. James, and James F. Stubbins.
Helium bubble nucleation in bcc iron studied by kinetic monte carlo simulations.
Journal of Nuclear Materials, 361(2-3):141-148, 2007.

35
P. Contamin, J. J. Bacmann, and J. F. Marin.
Autodiffusion de l'oxygene dans le dioxyde d'uranium surstoechiometrique.
Journal of Nuclear Materials, 42(1):54-64, 1972.

36
G. E. Murch, D. H. Bradhurst, and H. J. De Bruin.
Oxygen self-diffusion in non-stoichiometric uranium dioxide.
Philosophical Magazine, 32(6):1141 - 1150, 1975.

37
J. Faber, C. Geoffroy, A. Roux, A. Sylvestre, and P. Abelard.
A systematic investigation of the dc electrical conductivity of rare-earth doped ceria.
Applied Physics a-Materials Science & Processing, 49(3):225-232, 1989.
ISI Document Delivery No.: AM139 Times Cited: 54 Cited Reference Count: 15 Springer verlag New york.



Aaron Oaks 2010-05-10