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VMC Overview

@ Objective: find Eg and test out W
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Variational Monte Carlo

VMC Overview

@ Objective: find Eg and test out W
o Model W for liquid He*

° Tune a1 and a to ﬁnd minimum

< Wiy WT o i EL(R)
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VMC Overview

e Model W for liquid He* as W1 = [Ticjexp[—(a1/rij)™]
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Variational Monte Carlo

VMC Overview

e Model W for liquid He* as W1 = [Ticjexp[—(a1/rij)™]
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Variational Monte Carlo

VMC Overview

e Model W for liquid He* as W1 = [Ticjexp[—(a1/rij)™]
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Variational Monte Carlo

VMC Algorithm

1 Initialize box of particles: L, N, a1, a>
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VMC Algorithm

1 Initialize box of particles: L, N, a1, a>
2 For each particle, i

e Propose move from rto rl =r; + 5%
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Variational Monte Carlo

VMC Algorithm

1 Initialize box of particles: L, N, a1, a>
2 For each particle, i
@ Propose move from r to r; =r; + 5%

o Compute weight of move and accept with:

. /Y — min |WT(ri,)|2
Al —r') = [1, "UT(ri)\z] (3)
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Variational Monte Carlo

VMC Algorithm

1
2
°
°

Initialize box of particles: L, N, a1, a»
For each particle, i
Propose move from r to r; = r; + f%

Compute weight of move and accept with:

IWT(V{)I2]

A(I’i — r;’) = min [1, W

Compute E; as per Eq. 1 and 2
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Variational Monte Carlo

VMC Algorithm

1
2
°
°

Initialize box of particles: L, N, a1, a»
For each particle, i
Propose move from r to r; = r; + f%

Compute weight of move and accept with:

. /Y — min |WT(ri,)|2
Al —r') = [1, "UT(ri)\z] (3)

Compute E; as per Eq. 1 and 2

Repeat for many combinations of a; and a;
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Variational Monte Carlo

Implementation

@ Use C++'s object-oriented language
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Implementation

@ Use C++'s object-oriented language

o Benefits: Code more "ideal", main code only a few lines long
e Created two classes:

1 Particles: Have a position and a mass

2 Configuration: A box of particles w/ PBC's

Bryan Dannowitz, Brian Dellabetta, Akshay Ghalsasi VMC vs DMC



Variational Monte Carlo

Implementation

Use C++'s object-oriented language

Benefits: Code more "ideal", main code only a few lines long
Created two classes:

Particles: Have a position and a mass

Configuration: A box of particles w/ PBC's

e N - e 6 ©

Configuration contains subroutines for moving all particles,
returning wave functions, calculating E;, etc.
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Variational Monte Carlo

Results

@ Using Eq.1 of calculating E;
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Variational Monte Carlo

Results

e Using Eq.2 of calculating E;

Trace of col 1 (data.dat) ean
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Variational Monte Carlo

Results

Trace of col 2 (data.dat)
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Diffusion Monte Carlo

DMC Overview
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Diffusion Monte Carlo

DMC Overview

@ In the imaginary time transform (it — 7)

| W)(7+07) = e’ | i), (4)
@ In imaginary time, energy states decay, not oscillate
lim W(R,7) = e | ¢y) (5)
T—00

e Using W(R), get diffusion equation for behavior with diffusion
and branching
e Using f(R,7) = Vg(R)V(R,7), we also get "Drift" Term

afRT Z Lozg RT]

o [VY6(R)
v [%Z)G(R) f

(R,ﬂ} T+ (E(R) - Er)f(R.7),
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Diffusion Monte Carlo

DMC Overview

@ Solution for this is a Green's function, G(R',R; 1)

@ From Trotter's theorem, for 7 — 0, we can break up diffusion
equation
@ Solve approximately for G(R’,R; 7)

(R" =R —V(R)7)?

/. ~ N _
G(r',r; 1) exp( >

exp(—(EL(R) + EL(R)5
™

@ And use this as a weight for moves:

_ [Ve(R)PG(R,R; 7)

WR.R) = GeRPCR. R )

(8)
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Diffusion Monte Carlo

DMC Algorithm

1 Initialize Ensemble containing many Configurations of Particles
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Diffusion Monte Carlo

DMC Algorithm

1 Initialize Ensemble containing many Configurations of Particles
2 For each Configuration, j
e For each particle i: ¥'; =r; +7V(r;) + 17

e Compute weight of move and accept with:

_ |Ve(R)IPG(R,R; 7)

VR = WeRIPGR R 7) ©)
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Diffusion Monte Carlo

DMC Algorithm

1 Initialize Ensemble containing many Configurations of Particles
2 For each Configuration, j
e For each particle i: ¥'; =r; +7V(r;) + 17

e Compute weight of move and accept with:

_ |\UG(R,)‘2G(R/’R;7—) (9)
~ [Ve(R)PG(R, R, )’

W(R',R)

3 Calculate branching probability:
Pg = exp (—T(iEL(R,);EL(R) —E7)

Branch n copies with n = floor(Pg + u) u € [0,1)
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Diffusion Monte Carlo

DMC Algorithm

4 Compute Average E; over Configurations
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Diffusion Monte Carlo

DMC Algorithm

4 Compute Average E; over Configurations
5 After O(100 — 1000) Configuration moves:
(] ET = <EL>
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Diffusion Monte Carlo

DMC Algorithm

4 Compute Average E; over Configurations
5 After O(100 — 1000) Configuration moves:
(] ET = <EL>

e Randomly branch / destroy Configurations to normalize
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Diffusion Monte Carlo

DMC Algorithm

4 Compute Average E; over Configurations

5 After O(100 — 1000) Configuration moves:

o Er =(E)

e Randomly branch / destroy Configurations to normalize
6 Repeat
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Diffusion Monte Carlo

DMC Implementation

o Created three classes:

1 Particles: Have a position and a mass

2 Configuration: A box of particles w/ PBC’s
3 Ensemble: A set of configurations
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Diffusion Monte Carlo

DMC Implementation

°
1
2
3
°
1
2
3

Created three classes:

Particles: Have a position and a mass
Configuration: A box of particles w/ PBC's
Ensemble: A set of configurations
Configuration contains subroutines for:
Moving all particles

Returning wave functions, Green's functions

Calculating E;
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Diffusion Monte Carlo

DMC Implementation

°
1
2
3
°
1
2
3
°
1
2
3

Created three classes:

Particles: Have a position and a mass
Configuration: A box of particles w/ PBC's
Ensemble: A set of configurations
Configuration contains subroutines for:
Moving all particles

Returning wave functions, Green's functions
Calculating E;

Ensemble contains subroutines for :
Branching, destroying configurations
Measuring average E; over all configurations
Adjusting E1
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Diffusion Monte Carlo

Preliminary Results

Preliminary Results
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Further Considerations

Better Wave Functions

Boronat's Jastrow Trial Wave Function gave us odd results, but
could be revisited

vr=TTew |-5(2P - sow (U F),
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Further Considerations
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