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VMC Overview

Objective: �nd E0 and test out ΨT

Model ΨT for liquid He4

Tune a1 and a2 to �nd minimum

E0 ≤ 1
N

∑
i
ĤΨT (Ri )
ΨT (Ri )

= 1
N

∑
i EL(Ri )
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VMC Overview

Model ΨT for liquid He4 as ΨT =
∏

i<j exp [−(a1/rij)
a2 ]

EL(Ri ) =
~2

2m

N∑
i=1

∇2
i ΨT

ΨT

+
N∑
i<j

V (rij)

EL(Ri ) =
a2(a2 − 1)~2aa21

2mra2+2
+

4εσ12

r12
− 4εσ6

r6
.

(1)

EL(Ri ) =
∑
i<j

V (rij)− 2
~2

2m
∇2(a1/rij)

a2 − ~2

2m

∑
i

G 2
i

EL(Ri ) =
∑
i<j

[
−a2(a2 − 1)~2aa21

mra2+2
+

4εσ12

r12
− 4εσ6

r6

]

+
∑
i

~2

2m

[
a2a

a2
1

ra2+1

]2
.

(2)
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VMC Algorithm

1 Initialize box of particles: L, N, a1, a2

2 For each particle, i

Propose move from r to r′
i

= ri + ξ L
2

Compute weight of move and accept with:

A(ri → ri
′) = min

[
1,
|ΨT (r′

i
)|2

|ΨT (ri)|2

]
(3)

Compute EL as per Eq. 1 and 2

Repeat for many combinations of a1 and a2
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Implementation

Use C++'s object-oriented language

Bene�ts: Code more "ideal", main code only a few lines long

Created two classes:

1 Particles: Have a position and a mass

2 Con�guration: A box of particles w/ PBC's

Con�guration contains subroutines for moving all particles,
returning wave functions, calculating EL, etc.
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DMC Overview

In the imaginary time transform (it → τ)

| Ψ〉(τ + δτ) =
∑

cie
εi δτ | ψi 〉, (4)

In imaginary time, energy states decay, not oscillate

lim
τ→∞

Ψ(R, τ) = c0e
ε0τ | ψ0〉 (5)

Using Ψ(R), get di�usion equation for behavior with di�usion
and branching
Using f (R, τ) = ΨG (R)Ψ(R, τ), we also get "Drift" Term

∂f (R, τ)

∂τ
=

[∑
i

−1
2
∇2
i f (R, τ)

]

−∇ ·
[
∇ψG (R)

ψG (R)
f (R, τ)

]
+ (EL(R)− ET )f (R, τ),

(6)
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DMC Overview

Solution for this is a Green's function, G (R′,R; τ)

From Trotter's theorem, for τ → 0, we can break up di�usion
equation

Solve approximately for G (R′,R; τ)

G (r′, r; τ) ∼ Nexp(−(R′ − R− V(R)τ)2

2τ
exp(−(EL(R) + EL(R′))

τ

2
(7)

And use this as a weight for moves:

W (R′,R) =
|ΨG (R′)|2G (R′,R; τ)

|ΨG (R)|2G (R,R′; τ)
, (8)
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DMC Algorithm

1 Initialize Ensemble containing many Con�gurations of Particles

2 For each Con�guration, j

For each particle i : r′i = ri + τV(ri ) + η

Compute weight of move and accept with:

W (R′,R) =
|ΨG (R′)|2G (R′,R; τ)

|ΨG (R)|2G (R,R′; τ)
, (9)

3 Calculate branching probability:

PB = exp
(
−τ(EL(R′)+EL(R)

2 − ET )
)

Branch n copies with n = �oor(PB + u) u ∈ [0, 1)
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DMC Algorithm

4 Compute Average EL over Con�gurations

5 After O(100− 1000) Con�guration moves:

ET = 〈EL〉
Randomly branch / destroy Con�gurations to normalize

6 Repeat
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DMC Implementation

Created three classes:

1 Particles: Have a position and a mass

2 Con�guration: A box of particles w/ PBC's

3 Ensemble: A set of con�gurations

Con�guration contains subroutines for:

1 Moving all particles

2 Returning wave functions, Green's functions

3 Calculating EL

Ensemble contains subroutines for :

1 Branching, destroying con�gurations

2 Measuring average EL over all con�gurations

3 Adjusting ET
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Preliminary Results

Preliminary Results
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Better Wave Functions

Boronat's Jastrow Trial Wave Function gave us odd results, but
could be revisited

ΨT =
∏
i<j

exp

[
−1
2

(
b

rij
)5 − L

2
exp

(
−(

rij − λ
Λ

)2
)]
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Thank You
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