## Today's Announcements

1. Test given back today. In general you did very well!
2. HW assigned today. Due Wednesday, 4/4/12.
3. Next Monday-1 $1^{\text {st }}$ discussion about Individual Projects.

## Today's take-home lessons

(i.e. what you should be able to answer at end of lecture)

1. How to label things so they fluoresce-ext. labels, GFP.
2. Total Internal Reflection Fluorescence (TIRF)- near surface.
3. Accuracy and Resolution-how fine can you see.
4. Fluorescence. What is it (amplitude, time-scale)?

## Fluorophores \& Quantum Yield

$\mathrm{k}=\mathrm{k}_{\mathrm{rad}}+\mathrm{k}_{\mathrm{n} . \mathrm{r} .} ; \tau=\tau_{\mathrm{rad}}+\tau_{\mathrm{n} . \mathrm{r} .}$. quantum yield $=\mathrm{k}_{\mathrm{rad}}\left(\mathrm{k}_{\mathrm{rad}}+\mathrm{k}_{\mathrm{n} . \mathrm{r}}\right)$

Very good dyes have q.y. approaching one ( $\mathrm{k}_{\mathrm{n} . \mathrm{r}} \approx 0$ )

fluorescein

Have $\geq 1$ electron that is free to move. Excitation light moves e's around, i.e. a dipole, and it can reradiate, often with polarization.


## Basics of Labeling: In vitro

Bind to: free cysteines (R-SH) (often only one or a few in proteins)
: free lysines ( $\mathrm{R}-\mathrm{NH}_{2}$ ) (many per protein)

## Cysteine Reactive




## Amine Reactive




Succinimidyl Ester


## Basics of Labeling In vivo (inside cell)

 Cell has a membrane, which is, in general, impermeant to dyes! Bi-Arsenic FLASH, Fluorescent Proteins, SNAP-tag, Halo-tagBi-Arsenic FLASH, ReASH...


FIAsH-EDT ${ }_{2}$ (nonfluorescent)


Fluorescent complex

Tsien, Science, 1998


Tsien, Science, 2002

## Green Fluorescent Protein (Nobel, 2009)

Genetically encoded dye (fluorescent protein)

(Motor) protein


Kinesin - GFP fusion

GFP


1 ?


Wong RM et al. PNAS, 2002
Genetically encoded $\rightarrow$ perfect specificity

## Different Fluorescent Proteins

Absorption

## Fluorescence


mHoneydew, mBanana, mOrange, tdTomato, mTangerine, mStrawberry, mCherry

Shaner, Tsien, Nat. Bio., 2004

## Green Fluorescent Protein: Genetically-encoded dye

Fluorescent protein from jelly fish


## How fine can you see?

 The Limits of Microscopy

Ernst Abbe
For visible microscopy, Resolution is limited to ~250 nm

Ernst Abbe \& Lord Rayleigh
Recent microscopy: 1-100 nm,

Here we present techniques which are able to get super-accuracy ( 1.5 nm ) and/or super-resolution ( $<10 \mathrm{~nm}, 35 \mathrm{~nm}$ )

## Super-Accuracy

 (Accuracy << 250 nm : $1.5 \mathrm{~nm}, 1-500 \mathrm{~ms}$ )

Fluorescence Imaging with One Nanometer Accuracy


Center can be found much more accurately than width

$$
\begin{aligned}
& S / N \approx \text { width } / \sqrt{N} \\
& \approx 250 / \sqrt{10} \approx 1.3 \mathrm{~nm}
\end{aligned}
$$

When light gets dim, what happens to your ability to find the center?

## How well can you localize? Depend on 3 things



## 1. \# of Photons Detected (N)

2. Pixel size of Detector (a)
3. Noise (Background) of Detector (b)
(includes background fluorescence and detector noise)

$$
\sigma_{\mu_{i}}=\sqrt{\left(\frac{s_{i}^{2}}{N}+\frac{a^{2} / 12}{N}+\frac{8 \pi s_{i}^{4} b^{2}}{a^{2} N^{2}}\right)}
$$

## Diffraction limited spot: Single Molecule Sensitivity

Accuracy of Center $=$ width $/$ S-N

$=250 \mathrm{~nm} / \sqrt{ } 10^{4}=2.5 \mathrm{~nm}= \pm 1.25 \mathrm{~nm}$


Enough photons (signal to noise)...Center determined to $\sim 1.3 \mathbf{n m}$
Dye lasts $5-10 \mathrm{x}$ longer -- typically $\sim 30 \mathrm{sec}-1 \mathrm{~min}$. (up to 4 min )
Start of high-accuracy single molecule microscopy

## Biomolecular Motors: Intra- \& Extra-Cellular Motion



## Motility of quantum-dot labeled Kinesin (CENP-E)



## $8.3 \mathrm{~nm} /$ step from optical trap

## Kinesin (Center-of-Mass) Moving



Kinesin moves with 8.4 nm /ATP step size.

## Kinesin: Hand-over-hand or Inchworm?


8.3 nm 8.38 .3 nm

16.6, 0, $16.6 \mathrm{~nm}, 0 .$.
[ATP] $=5 \mu \mathrm{M} ; 4$ msec exposure time
(Originally $0.3 \mu \mathrm{M} ; 500 \mathrm{msec}$ exp. time)

## Kinesin



Takes 16 nm hand-over-hand steps (even at $5 \mu \mathrm{M}$ )

## Class evaluation

1. What was the most interesting thing you learned in class today?
2. What are you confused about?
3. Related to today's subject, what would you like to know more about?
4. Any helpful comments.

Answer, and turn in at the end of class.

