UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Optical Traps

Optical Trap (Nobel Prize, 1997)
Bead is held by "optical force" in trap with effective spring constant k .
Can measure: "stall force" -max force motor can make. displacement of bead with nm . resolution.

Key points

Light generates 2 types of optical forces: scattering, gradient.

Gradient leas to radiation pressure.
Trap strength depends on light intensity, gradient
Trap is harmonic: $\mathrm{k} \sim 0.1 \mathrm{pN} / \mathrm{nm}$

Optical scattering forces - reflection

Newton's third law - for every action there is an equal and opposite reaction

Optical forces - Refraction

Lateral gradient force

Object feels a force toward brighter light

Axial gradient force

Focused

IR traps and biomolecules are compatible

Biological scales

Force: 1-100 picoNewton (pN) Distance: <1-10 nanometer (nm)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Range of forces an optical trap can measure.
Estinate size of Traping force
Force due to scattering of phiton(s).
Single case - oflection (Hene we -lait

Face on matinal $=\frac{\Delta p}{\Delta t}=\frac{2 P_{p t h}}{\Delta t}$
($p=$ monention of ρ hotin)
is slighty mave ganel $F=\frac{t}{*}-\frac{Q_{p}}{\Delta t}$
$Q=S(d i m a n s m b e n)$ efficiery fach lout perifat voflectro/scuttoned at angle so in gareme $\Delta p+2 p$ bet $\Delta p-e_{p}$)
Now we just want t convert momention/time
into somathing more consonest like Eneyg/time $=$ Pamer of maideat light

For light (is vacuum)

$$
E=p c
$$

For light in material udex of refraction n

$$
\begin{aligned}
& E=p v=p c / n \quad \text { (enengy } / \mathrm{p} \text { hater) } \\
& \frac{E}{\Delta t}=\frac{P c}{n \Delta t}=\text { Powar } \\
& \frac{P}{\Delta t}=(P a n-) n / c=\text { mei-lect momanting } \\
& \text { Fowner of a me in mexisan } \\
& \text { of nofrative ndex } \\
& F=\frac{Q P}{d t}=\frac{Q(\operatorname{Pan})(n)}{c}
\end{aligned}
$$

Q for spthancl gactich radurs $\sim \lambda$ $Q-0.1$

For $P=1 \mathrm{~mW}=1 \mathrm{~mJ} / \mathrm{sec}=10^{-3} \mathrm{~N}-\mathrm{m} / \mathrm{s}$

$$
\begin{aligned}
& F \sim \frac{(0.1)\left(10^{-3} \mathrm{~N}-\mathrm{m} / \mathrm{s}\right)}{3 \times 10^{3} \times 1+\mathrm{c}}(21.3) \\
& F \sim \frac{1}{2} p^{N} \\
& \sim 0.5 \mathrm{P}^{N} / \mathrm{mW} \text { of lase powar }
\end{aligned}
$$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Stiffness (spring constant) of Optical Trap
If power drops from P to zero over λ / n

$$
\begin{gathered}
F=K x \\
0 \quad x=0 \quad F=0 \\
x-\frac{\lambda}{n} F=\frac{Q_{n} P}{c} \\
\frac{Q_{n} P}{c}=\frac{k \lambda}{n} \\
\frac{Q_{n} P}{\lambda c}
\end{gathered}
$$

Typal spring constants $-0.01-0.1 \mathrm{pN} / \mathrm{mm}$
for $P \sim 100 \mathrm{~mW}$ on sioso/plastic beads $\sim / \mu \mathrm{m}$
Traps roughly linear $\sim 200 \mathrm{~mm}$ ($>$ this, bead escapes)
Note: Opal trap us eantlever
Optical traps produce len fare (cant la sk at re ells Damping $1 \mu m$ bead $\sim 10 x$ lass than $100 \mu \mathrm{~m}$ cant lever
\therefore for same free/tropstiffress optical
trap has better fine resolution ($I \sim \gamma / k$)

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Requirements for a quantitative optical trap:

1) Manipulation - intense light (laser), large gradient (high NA objective), moveable stage (piezo stage) or trap (piezo mirror, AOD, ...) [AcoustOpicic Device- moveable laser pointer]
2) Measurement - collection and detection optics (BFP interferometry)
3) Calibration - convert raw data into forces (pN), displacements (nm)

1) Manipulation

Want to apply forces - need ability to move stage or trap (piezo stage, steerable mirror, AOD...)
(Acouto Optic Device:
variable placement of laser)

By using two beads, and taking difference, capable of removing floor movement! Get to Angstrom level!

2) Measurement

Want to measure forces, displacements - need to detect deflection of bead from trap center

1) Video microscopy
2) Laser-based method - Back-focal plane interferometry

BFP imaged onto detector

Trap laser

Position sensitive detector (PSD)

Plate resistors separated by reversebiased PIN photodiode

Opposite electrodes at same potential

- no conduction with no light

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Multiple rays add their currents linearly to the electrodes, where each ray's power adds W_{i} current to the total sum.

$$
\Delta X \sim\left(\mathrm{In}_{1}-\ln \mathrm{n}_{2}\right) /\left(\mathrm{In}_{1}+\mathrm{In}_{2}\right)
$$

$$
\Delta \mathrm{Y} \sim\left(\mathrm{Out}_{1}-\mathrm{Out}_{2}\right) /\left(\mathrm{Out}_{1}+\mathrm{Out}_{2}\right)
$$

Calibration

Want to measure forces, displaces - measure voltages from PSD - need calibration

$$
\begin{aligned}
& \Delta \mathrm{x}=\alpha \Delta \mathrm{V} \\
& \mathrm{~F}=\mathrm{k} \Delta \mathrm{x}=\alpha \mathrm{k} \Delta \mathrm{~V}
\end{aligned}
$$

Calibrate with a known displacement

Move bead relative to trap

Calibrate with a known force

Stokes law: $\mathrm{F}=\gamma \mathrm{v}$

Brownian motion as test force

Langevin equation:
 $\dot{x}+k x=F(t)$
 Trap force

Drag force $\gamma=3 \pi \eta \mathrm{~d}$

Fluctuating
Brownian force

$$
\langle F(t)\rangle=0
$$

$$
\left\langle F(t) F\left(t^{\prime}\right)\right\rangle=2 \mathrm{k}_{\mathrm{B}} \mathrm{~T} \gamma \delta\left(t-t^{\prime}\right)
$$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Autocorrelation function $\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

$\Delta \mathrm{At} \Delta \mathrm{t}$

$\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Autocorrelation function $\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

$\Delta i n t \Delta t$
$\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Brownian motion as test force (will continue next time)

Langevin equation:
 $$
\dot{x}+k x=F(t)
$$

Exponential autocorrelation function

$$
\left\langle\Delta x(t) \Delta x\left(t^{\prime}\right)\right\rangle=\frac{k_{B} T}{k} e^{-k\left|t t^{\prime}\right| / \gamma}
$$

$$
\left\langle\Delta x^{2}\right\rangle=\frac{k_{B} T}{k}
$$

FT \rightarrow Lorentzian power spectrum

$$
S_{x}(f)=\frac{4 k_{B} T \gamma}{k^{2}} \frac{1}{1+\left(f / f_{c}\right)^{2}}
$$

Corner
frequency

$$
f_{c}=k / 2 \pi \gamma
$$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Class evaluation

1. What was the most interesting thing you learned in class today?
2. What are you confused about?
3. Related to today's subject, what would you like to know more about?
4. Any helpful comments.

Answer, and turn in at the end of class.

