UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Review of Topics

Inertia Terms is << drag (viscosity) term
 Sidebar: Fourier Transforms

List of topics we've so-far covered

(12 of them)

- 1. Size vs. strength: L^{3} vs. L^{2}.
- 2. Partition function, Bolizmann distribution: $\left(Z^{-1} \Sigma e^{\left.-E k_{\mathrm{E}}{ }^{\top}\right)}\right.$
- 3. Enthalpy $\Delta H(\approx \Delta E)$, entropy $\Delta S=\ln W_{i}$, \& Free Energy $(\Delta G): \Delta G \approx \Delta E-T \Delta S$
- 4. Proteins \& amino acids
a. 20 amino acids: R group: Non-polar, polar, charged;

Hydrophobic vs hydrophilic
b. Bonds \& strength of bonds (covalent, ionic, hydrogen, van der Waals)
c. Primary, secondary, tertiary, quarternary structures

- 5. Enzyme, activation energy
- 6. DNA
a. Structure and function- 3 parts: base composition (aromatic group
(T,A,G,C), sugar (two -OH), phosphate backbone. $3^{〔}$ and 5^{\prime} end.
b. Twist
d. Supercoiling: Twist and Writhe
e. $N_{\text {buckling }}, \Gamma_{\text {buckling }}$
f. Persistence length

List of topics we've so-far covered

- 6. DNA
a. Structure and function
b. Base composition
c. Twist
d. Supercoiling: Twist and Writhe
e. Nbuckling : DNA starts to buckle and forms supercoil with slope, $\mathrm{S}_{\text {buckling }}$
f. Persistence length
- 7. RNA
a. Structure \& Base composition (less -OH and U instead of T)
b. Function- more diverse/catalytic; and less good at storage.
c. RNA world vs. DNA world. Archea, Prokaryic (Bacteria), Eukaryotic.
- 8. Equipartition theorem: $1 / 2 \mathrm{k}_{\mathrm{B}} \mathrm{T}=$ degree of freedom which goes like $\mathrm{y}_{\mathrm{i}}{ }^{2}$.
- 9. Freely Jointed chain (FJC) and worm Like chain (WLC)
- 10. Magnetic trap
- 11. Atomic Force Microscope
- 12. Optical Trap- Bandwidth limits

The noise in position using equipartition theorem \rightarrow you calculate for noise at all frequencies (infinite bandwidth).

For a typical value of stiffness $(k)=0.1 \mathrm{pN} / \mathrm{nm}$.

$$
\begin{gathered}
\left\langle x^{2}>^{1 / 2}=\left(k_{B} T / k\right)^{1 / 2}=(4.14 / 0.1)^{1 / 2}=(41.4)^{1 / 2} \sim 6.4 \mathrm{~nm}\right. \\
\\
6.4 \mathrm{~nm} \text { is a pretty large number. }
\end{gathered}
$$

[Kinesin moves every 8.3 nm ; 1 base-pair = $3.4 \AA$]
How to decrease noise?

Reducing bandwidth reduces noise

If instead you collect data out to a lower bandwidth BW (100 Hz), you get a much smaller noise.

Noise = integrate power spectrum over frequency.
If $B W<f_{c}$ then it's simple integration because power spectrum is constant, with amplitude $=4 \mathrm{k}_{\mathrm{B}} T \gamma / \mathrm{k}^{2}$

Let's say $\mathrm{BW}=100 \mathrm{~Hz}$: typical value of $\gamma\left(10^{-6}\right.$ for $\sim 1 \mu \mathrm{~m}$ bead in water).
But $\left(\left\langle\mathrm{X}^{2}\right\rangle_{\mathrm{BW}}\right)^{1 / 2}=\left[\int \operatorname{const}^{*}(B W) \mathrm{dk}\right]^{1 / 2}=\left[\left(4 \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\gamma} 100\right) / \mathrm{k}\right]^{1 / 2}=$ $\left[4^{*} 4.14^{*} 10^{-6 *} 100 / 0.1\right]^{1 / 2}$
~ $0.4 \mathrm{~nm}=4$ Angstrom!!

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Basepair Resolution-Yann Chemla @ UIUC

unpublished

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Observing individual steps

Motors move in discrete steps

Detailed statistics on kinetics of stepping \& coordination

Kinesin

Step size: 8nm

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Brownian motion of small particle: ma ≈ 0

$\approx 0 \quad$ Langevin equation:
$m \ddot{x}+\dot{x}+k x=F(t)$
$k_{B} T=4.14 p N-n m$
$\uparrow \quad \varlimsup_{\text {Trap force }}$
Inertia term
(ma)
Inertia term for $\mu \mathrm{m}$-sized objects is always small (...for bacteria)

Drag force

$$
\gamma=6 \pi \eta r
$$

FT \rightarrow Lorentzian power spectrum

$$
S_{x}(f)=\frac{4 k_{B} T \gamma}{k^{2}} \frac{1}{1+\left(f / f_{c}\right)^{2}}
$$

Fluctuating
Brownian
force Exponential autocorrelation function

$$
f_{\mathrm{c}}=k / 2 \pi \gamma
$$

Corner frequency

1. Voltages vs. time from detectors. 2. Take FT. 3. Square it to get Power spectrum.
2. Power spectrum $=\alpha^{2}$ * $S_{x}(f)$.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

We want to show:

For small objects the inertial force term ≈ 0

$$
\mathrm{md}^{2} \mathrm{x} / \mathrm{dt}^{2} \ll \gamma \mathrm{dx} / \mathrm{dt}
$$

Sidelight into Fourier Transforms

$x(\omega)=$ the amplitude of $x(t)$ which has the frequency at ω. So if you add up all $x(\omega)$, you will get back $x(t)$.
To include all possible ω, go from -infinity to + infinity
A differential equation can be looked at as a simple algebraic equation through Fourier Transforms.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Can add up and get all sorts of function

Fig-C : Square wave and its Fourier series (only first three terms are taken)

Square wave

$$
f(x)=\frac{4}{\pi} \sum_{n=1,35, \ldots}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{L}\right) .
$$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Fourier Transform: can view as a f(t), or a f(ω)

$\mathrm{f}(\mathrm{t})=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{F}(\omega) e^{-i \omega t} d \omega$

$$
\mathrm{F}(\omega)=\int_{-\infty}^{\infty} \mathrm{f}(\mathrm{t}) e^{i \omega t} d t
$$

ω, the angular frequency (2f),

$$
e^{i \omega t}=\cos (\omega t)+i \sin (\omega t)
$$

where $i=\sqrt{-1}$ term (black line), four terms (blue line), and sixteen terms (red line) in the Fourier expansion. As more terms are added the superposition of sine waves better matches a square wave.

Tissue

$$
f(x)=\frac{4}{\pi} \sum_{n=1,35}^{\infty} \frac{1}{n} \sin \left(\frac{n \pi x}{L}\right)
$$

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

$F(\mathrm{t})$ and $\mathrm{f}(\omega)$: Equivalent

Copyright $2000 \mathrm{~B} . \mathrm{M}$. Tissue

Fourier Transform of a Square Wave

Ampitude

coh+n

$\tilde{x}(\quad)={ }^{+} x(t) e^{i w t} d t$

If the FT of $x(t)=x(\omega)$, then
A trick: $\mathrm{dx}(\mathrm{t}) / \mathrm{dt}=\mathrm{i} \omega \mathrm{x}(\omega)$
then $d^{2} x / d t^{2}=-\omega^{2} x$
[will give as homework]

$$
\begin{aligned}
& \text { Langevin equation: } \\
& m \ddot{x}+\dot{x}+k x=F(t)
\end{aligned}
$$

Langevin equation:
$m^{2} \tilde{x}+i \quad \tilde{x}+k \tilde{x}=F()$

Some numbers...

$$
\begin{aligned}
& \omega=2 \pi \times 10^{4} \\
& \mathrm{~m}=4 / 3 \pi \rho \mathrm{r}^{3}: \mathrm{r}=0.5 \mu \mathrm{~m} ; \\
& \rho=1.05 \mathrm{~kg} / \mathrm{m}^{3}=1.75 \times 10^{-16} \\
& \text { Inertial term: } \mathrm{m} \omega^{2}=2.2 \times 10^{-6} \\
& \eta=10^{-3} \text { (viscosity of water) } \\
& \gamma=6.0 \pi \eta r=1.9 \times 10^{-8}
\end{aligned}
$$

Viscosity Term: $\gamma \omega=0.0012$ Harmonic term: $\mathrm{k}=0.1 \mathrm{pN} / \mathrm{nm}$

Ratio $=$ IT/VT $=0.0018$
So Inertial term << Viscous term

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Class evaluation

1. What was the most interesting thing you learned in class today?
2. What are you confused about?
3. Related to today's subject, what would you like to know more about?
4. Any helpful comments.

Answer, and turn in at the end of class.

