
Quantum Tunneling

In this chapter, we discuss the phenomena which allows an electron to quan-

tum tunnel over a classically forbidden barrier.
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This is a strikingly non-intuitive process where small changes in either the

height or width of a barrier create large changes the tunneling current of particles

crossing the barrier. Quantum tunneling controls natural phenomena such as

radioactive α decay where a factor of three increase in the energy released during

a decay is responsible for a 1020 fold increase in the α decay rate. The inherent

sensitivity of the tunneling process can be exploited to produce photographs

of individual atoms using scanning tunneling microscopes (STM) or produce

extremely rapid amplifiers using tunneling diodes. It is an area of physics which

is as philosophically fascinating as it is technologically important.

Most of this chapter deals with continuum rather than bound state systems.

In bound state problems, one is usually concerned with solving for possible sta-

tionary state energies. In tunneling problems, one has a continuous spectrum

of possible incident energies. In these problems we are generally concerned with

solving for the probability that an electron is transmitted or reflected from a

given barrier in terms of its known incident energy.

Quantum Current

Tunneling is described by a transmission coefficient which gives the ratio

of the current density emerging from a barrier divided by the current density

incident on a barrier. Classically the current density ~J is related to the charge
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density ρ and the velocity charge velocity ~v according to ~J = ρ ~v. Its natural to

relate the current density ρ with the electron charge e and the quantum PDF(x)

according to ρ = eΨ∗(x)Ψ(x). It is equally natural to describe the velocity

by p̂/m where (in 3 dimensions) p̌ = −ih̄(∂/∂x) → −ih̄~∇. Of course ~∇ is an

operator which needs to operate on part of ρ. Recalling this same issue from our

discussion on Quantum Measurement we expect:

~J ∼ e

m
Ψ∗~∇Ψ (1)

This form isn’t totally correct but fairly close as we shall see.

The continuity equation which relates the time change of the charge density

to the divergence of the current density, provides the departure point for the

proper derivation of the quantum current.

∂ρ

∂t
+ ~∇ · ~J = 0 (2)

By integrating both sides of the continuity current over volume (d3x) and using

Gauss’s theorem, one can show that the continuity equation is really just an

elegant statement of charge conservation or the relationship between the rate of

change of the charge within a surface and the sum of the currents flowing out of

the surface.
∂

∂t

∫

V

d3x ρ+
∫

V

d3x ~∇ · ~J = 0

0 =
∂Q

∂t
+
∫

S

d~a · ~J =
∂Q

∂t
+ Iout (3)

Rather than talking about the charge and current current density; one often

removes a factor of e and talks about the probability density (PDF = ρ) and

probability current. We know that the probability density is given by just ρ =

Ψ∗Ψ and can get a formula like the continuity equation by some simple, but
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clever manipulations of the time dependent Schrödinger Equation. We begin

pre-multiplying the SE by Ψ∗:

ih̄Ψ∗∂Ψ
∂t

= − h̄2

2m
Ψ∗ ∂

2

∂x2
Ψ + V (x)Ψ∗Ψ (4)

We next pre-multiply the complex conjugate of the SE by Ψ and assume a real

potential.

−ih̄Ψ
∂Ψ∗

∂t
= − h̄2

2m
Ψ
∂2

∂x2
Ψ∗ + V (x)Ψ∗Ψ (5)

Subtracting Eq. (5) from (4) we have:

ih̄

(
Ψ∗∂Ψ

∂t
+ Ψ

∂Ψ∗

∂t

)
= − h̄2

2m

(
Ψ∗ ∂

2

∂x2
Ψ − Ψ

∂2

∂x2
Ψ∗
)

(6)

By applying the rules for differentiating a product it is easy to show:

∂Ψ∗Ψ
∂t

=
(

Ψ∗∂Ψ
∂t

+ Ψ
∂Ψ∗

∂t

)

∂

∂x

(
Ψ∗ ∂

∂x
Ψ − Ψ

∂

∂x
Ψ∗
)

=
(

Ψ∗ ∂
2

∂x2
Ψ − Ψ

∂2

∂x2
Ψ∗
)

(7)

Inserting the Eq. (7) expressions into Eq. (6) and dividing by ih̄ we have:

∂Ψ∗Ψ
∂t

+
∂

∂x

h̄

2mi

(
Ψ∗ ∂

∂x
Ψ − Ψ

∂

∂x
Ψ∗
)

= 0 (8)

As you can see Eq. (8) is of the form of the 1 dimensional continuity Eq. (1)

once one makes the identification:

ρ = ψ∗ψ , ~J =
h̄

2mi

(
Ψ∗ ∂

∂x
Ψ − Ψ

∂

∂x
Ψ∗
)

→ h̄

2mi

(
Ψ∗~∇Ψ − Ψ~∇Ψ∗

)

~J =
h̄

m
Im
(
Ψ∗~∇Ψ

)
(9)

where the latter form follows from the observation that a− a∗ = 2i Im(a) where

Im() denotes an imaginary part.

3



In computing the current using Eq. (9) one must consider both the time

dependence as well as the space dependence. In order to produce a non-vanishing

current density, the wave function must have a position dependent phase.

Otherwise, the phase of Ψ(x, t) will be the same as the phase of ~∇Ψ(x, t) and

therefore Ψ∗~∇Ψ will be real. The current density for an electron in a stationary

state of the form Ψ(x, t) = ψ(x) exp (−iωt) is zero since the phase dependence

has no spatial dependence. This makes a great deal of sense since the PDF of

a stationary state is time independent which indicates no charge movement or

currents. A combination of two stationary states with different energies such

as: Ψ(x, t) = a ψ1(x) exp (−iω1t) + b ψ2(x) exp (−iω2t) will have a position

dependent phase , an oscillating PDF, and a non-zero current density which you

will explore in the exercises.

To reinforce the idea that a position dependent phase is required to support

a quantum current, consider writing the wave function in polar form ψ(x) =

|ψ(x)| exp(iφ(x)) where we have a real modulus function |ψ(x)| and a real phase

function φ(x). Using the chain rule it is easy to show that:

~J =
h̄

m
|ψ(x)|2 ~∇φ(x) (10)

Hence the quantum current is proportional to the gradiant of the phase – a

constant phase implies no current.

A particularly simple example of a state with a current flow is a quantum

traveling wave of the form: Ψ(x, t) = a exp (ikx− iωt). Direct substitution of

this form into Eq. (9) or (10) gives us:

~J = (a∗a)
h̄k

m
x̂ (11)

A Strategy For Solving Tunneling Problems

We will limit ourselves to one-dimensional tunneling through a various po-

tential barriers. An important consequence of working in one dimension is that
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the current must be the same at every point along the x-axis since there is no

where for the charges to go. We can insure this automatically by using a single,

stationary state wave function corresponding to a particle with a definite energy

to describe the current flow everywhere. Let us see why this works. In one

dimension, the (probability) continuity equation becomes:

∂

∂t
{Ψ∗Ψ} +

∂J

∂x
= 0 ,

∂

∂t
{Ψ∗Ψ} = 0 for a stationary state → ∂J

∂x
= 0 (12)

Eq. (12) implies that J is independent of position, and since it is constructed from

a stationary state wave function, Eq. (9) tells us that J is independent of time.

We thus automatically get a constant current with the same value everywhere

along the x axis.

How do we find the stationary state wave function? Usually we choose a

constant (often zero) potential region on the left of any barriers to “start” a

wave function of the form ψ = exp(ikx) + r exp(−ikx) where k =
√

2mE/h̄.

We think of the exp(ikx) piece as the incident wave which travels along the

positive x axis and the r exp(−ikx) piece as the reflected wave. One can show†

that the total current in this zero potential region (or any other region) is

J = h̄k/m− |r|2h̄k/m. We can think of the total current as the algebraic sum of

the incident and reflected currents where each contribution is computed by Eq.

(11). One then uses continuity of the wave function and derivative continuity to

find the unknown r coefficient. The result of the calculation is generally expressed

by a reflection coefficient R ≡ |r|2 which is equivalent to R = |Jr|/|Ji| where Jr
is the reflected current due to r exp(−ikx) piece and Ji is the incident current

due to the exp(ikx) piece. Our goal is to calculate R as a function of E which

determines the k value we start with.

If it turns out that R < 1, there will be a net current at x = +∞ (and

everywhere else) which we will call the transmitted current or Jt. This will be a

† In homework you show that the interference between the incident and reflected parts of the
wave function carries no current which is far from obvious without an explicit calculation
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single current since we assume there is nothing at infinity to reflect this current.

Current conservation reads Ji + Jr = Jt or |Ji| − |Jr| = |Jt| or dividing by |Ji| ,

1 − R = T where T is the transmission coefficient defined as T = |Jt|/|Ji|. We

will illustrate this approach in the next section.

The Quantum Curb

The quantum curb as illustrated below involves a traveling wave of the form

exp (ikx) carrying an incident (probability) current ~J = k
m x̂ which travels to the

right in the x < 0 region of zero potential. It strikes a potential step of height

V at x = 0 producing both a reflected wave of amplitude r which travels to the

left along with a transmitted wave of amplitude t which travels to the right. In

order to insure traveling waves in both the x > 0 and x < 0 regions, the electron

must be classically allowed and have sufficient energy such that E > V .

= 

ψ= ψ= e
x

x = 0

V

E

k
2 m (E -V)

2

i k2-
+ r i k1

x
e te

k
1 

= 
2 m E

h h

1i k x

0

Following our strategy we write ψ = exp(ikx) + r exp(−ikx) in our constant

potential region at x < 0. We can then solve for r and t which are the ampli-

tudes of the reflected and transmitted wave relative to the incident wave of unit

amplitude by envoking continuity of ψ, Eq. (13), and its derivative, Eq. (14), at

the point x = 0.

eik10 + r e−ik10 = t eik20 → 1 + r = t (13)
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∂

∂x
eik1x+

∂

∂x
r e−ik1x =

∂

∂x
t eik2x|x=0 → ik1−ik1 r = ik2 t→ 1−r =

k2

k1
t (14)

Adding Eq. (13) and Eq. (14) we get

2 = 1 +
k2

k1
t→ t =

2k1

k1 + k2
(15)

From 1 + r = t we can find r = 1 − 2k1

k1 + k2
→ r =

k1 − k2

k1 + k2
(16)

We note that k1 =
√

2mE/h̄ and k2 =
√

2m(E − V )/h̄ which means for the

step up curb: k1 > k2 and r > 0. If the curb were a step down curve r < 0.

We turn next to the R and T coefficients. These are not the relative ampli-

tudes t and r, but rather are the ratio of the currents carried by the transmitted

or reflected waves over the incident wave. Following Eq. (11) we have:

T =
(t∗t) k2/m

k1/m
=

4k1k2

(k1 + k2)
2

(17)

R =
(r∗r) k1/m

k1/m
=

(k1 − k2)
2

(k1 + k2)
2 (18)

Using algebra you can show from Eq. (17) and Eq. (18) that T + R = 1 as we

expect. The current would not be conserved if we had (incorrectly) written the

transmission coefficient as the just ratio of the transmitted over incident squared

moduli (T = t∗t) rather than the correct expression T = t∗t k2/k1. The formula

for the reflection and transmission coefficients for a light wave passing from air

to glass is exactly the same as Eq.(17) and Eq. (18) which one gets from classical

electrodynamics.
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We can use k1 =
√

2mE/h̄ and k2 =
√

2m(E − V )/h̄ to write the transmis-

sion and reflection coefficients in terms of the dimensionless ratio E/V.

T =
4
√
E/V

√
E/V − 1

(√
E/V +

√
E/V − 1

)2 , R =

(√
E/V −

√
E/V − 1

)2

(√
E/V +

√
E/V − 1

)2 (19)

The below figure shows a sketch of the R and T coefficient as a function of E/V .

through step barrier
Reflection and Transmission 

E/V1.

T

T
R

R1

The above plot suggests that once E < V there is 100 % reflection and 0

% transmission. This case is formally discussed in one of the exercises, but is

reasonably easy to understand. If E < V , x > 0 becomes a classically forbidden

region with an exponential wave function of the form ψ = te−βx = |t| eiδ e−βx.

-

i k xe

V=0

E

V

x=0

t  e
xβψ =

The current ~J = (h̄/m)Im
(
Ψ∗~∇Ψ

)
must vanish in this region since the com-

plex phase is a constant (δ) independent of x. Informally there is no transmission
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current since the wave function of the electron exponentially dies away in the re-

gion x > 0 leaving no possibility of finding the electron at large values of x. Since

there is no current at x > 0, there can be no current at x < 0 either which means

the reflected current must cancel the incident current and thus R = 1.

It is interesting to compute the (unnormalized) PDF in the two regions. In the

region x > 0 the PDF is of the form PDF(x > 0) = |ψ(x)|2 = |t|2 exp(−2βx). In

the region x < 0 we have PDF(x < 0) =
∣∣eikx + |r| eiδ e−ikx

∣∣2 We have explicitly

written the reflection amplitude as a modulus |r| and a phase δ. In this case

|r| = 1 and, as you show in homework, δ is a function of E/V. Using |A+ B|2 =

|A|2 + |B|2 + 2Re {A∗B} = |A|2 + |B|2 + 2Re {B∗A} we have:

PDF(x < 0) = 1 + |r|2 + 2|r| cos (2kx− δ) = 2 + 2 cos (2kx− δ) (20)

Below is a crude sketch of the PDF where the PDF has continuity and derivative

continuity at x = 0. In the x < 0 region one has a standing wave pattern.

Quantum Tunneling

As we just saw, there is no transmission through a classically forbidden barrier

step since beyond x > 0 we have a single, exponentially decaying wave function

which cannot create the position dependent phase required to have a non-zero

quantum current. If , on the other hand, we restore the potential back to ground

as shown below, the classically forbidden region can have both exp(+βx) as well

as exp(−βx) contributions. As long as the boundary condition equations give a
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different complex phase between these two contributions, the complex phase will

develop a position dependence and the classically forbidden region will carry a

current, implying there will be a current in the x < 0 region as well and hence

R < 1, T > 0 and there will be a current at infinity.

Another way of looking at this is based on the fact that the current according

to Eq. (9) is proportional to the wave function as well as its derivative. If there

is just a classically forbidden region past x > 0, the wave function will die out to

zero and there will be no possibility of a non-zero ψ at infinity. Since, J ∝ ψ∗ ∂ψ
∂x

according to Eq. (9), this means there can be no quantum current at x → ∞
and thus no net current anywhere. If , however, we restore the potential back to

ground, we can “catch” the dying wave function before it totally decays away,

and have thus have ψ 6= 0 at infinity and thus a current everywhere.

We have crudely sketched the PDF = ψ∗ψ of the electron in the limit of

low transmission. We can estimate the transmission coefficient in this limit by

making use of the classically forbidden, quantum curb PDF’s discussed in the

last section. The PDF’s in region #1 , #2, and #3 will be

PDF1 ≈ 2+2 cos(2kx−δ) ; PDF2 ≈ |c|2e−2βx ; PDF3 = |teikx|2 = |t|2 (20b)

The region #1 PDF is approximate since we set |r| = 1 whereas |r| is slightly less

than 1 in the low transmission limit. The region #2 PDF is approximate since

we threw away the exp(βx) piece that must be present in region #2 to convey

the current but it should be small in this limit. We can now estimate T = |t|2
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by matching the approximate PDF’s at x = 0 and x = a.

PDF1(0) = 2 + 2 cos(δ) = f(E/V ) = PDF2(0) = |c|2 → |c|2 = f(E/V )

We write PDF1(0) = f(E/V ) since the phase δ is a function of E/V for the

classically forbidden quantum current.

PDF2(a) = f(E/V )e−2βa = PDF3(a) = |t|2 → T = f(E/V )e−2βa (20c)

This is indeed the correct form of the exact solution when βa � 1 given by Eq.

(26) that we discuss in the next section. We will show that f(E/V ) is a relatively

smooth function that is approximately 1 meaning that the transmission coefficient

is roughly T ≈ exp−2βx where β =
√

2m(V −E)/h̄. As we will argue later this

means that the tranmitted current is very sensitive to very small (atomic scale)

changes in a and the forbidden gap V − E. Here is an illustration. Consider an

energy gap of V −E = 2 eV . This is typical of the work function of metals which

forms the barrier preventing metal electrons from escaping into space. The β

corresponding to this work function is:

β =

√
2m(V − E)

h̄
=

√
2mc2(V − E)

h̄c
=

√
2(0.511 × 106 eV )(2 eV )

197 eV nm
= 7.26 nm−1

Now consider varying the tunneling length a from a = 0.25 nm to a = 0.20 nm,

the ratio of the tunneling current is:

T (0.20)
T (0.25)

=
f(E/V ) exp(−2(7.26)(0.20))
f(E/V ) exp(−2(7.26)(0.25))

= e14.5 (0.25−0.20) = 2.1

To put this into perspective, we found that changing the tunneling length by

the radius of a hydrogen atom (0.05 nm) changes the tranmission coefficient or

tunneling current by 210 %. This extreme sensitivity of tunneling to distance

changes on the scale of atomic dimensions forms the foundation of the STM or

scanning tunneling microscope that we will describe later.

11



Formal Solution of the Classically Forbidden Barrier

0

β

V

+

0

c d

-a/2 a/2
x

+ r e
-ikx

e i k xt

h
2 m (V -E)

e
x-

e
β x

e i k x

β = 
h

k = 
2 m E

h
k = 

2 m E

E

In close analogy with our treatment of the step, in the region x < −a/2 we

have an incident and reflected wave ψ = eikx + r e−ikx. In the forbidden region,

the wave function is constructed out of a decaying and growing exponential with

unknown coefficients. We can envoke continuity and derivative continuity at the

boundary x = −a/2 to obtain:

e−ika/2 + r eika/2 = c e−βa/2 + d e+βa/2 (21)

ik e−ika/2 − ik r eika/2 = β c e−βa/2 − βd e+βa/2 (22)

In the region x > a/2 we have a single transmitted wave and can envoke conti-

nuity and derivative continuity at the boundary x = +a/2 to obtain:

c eβa/2 + d e−βa/2 = t eika/2 (23)

β c e+βa/2 − β d e−βa/2 = ik t eika/2 (24)

Eq. (21) - Eq. (24) represent four equations in four unknowns: ( r c d t ).

The solution to this series is not terribly instructive so I will just quote the results
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for the transmission coefficient:

T =

(
1 +

sinh2 (βa)
4(E/V )(1 −E/V )

)−1

where β =

√
2m(V − E)

h̄
(25)

The reflection coefficient follows from R = 1 − T . To get some insight into this

we will go to various limits.

The βa� 1 limit

In this limit sinh β → 1
2e
βa � 1. This means that sinh2 ( )/[ ] dominates

the expression 1 + sinh2 ( )/[ ] and Eq. (25) becomes:

T ≈ 16(E/V )(1 −E/V ) e−2βa (26)

This expression agrees with the form we deduced in Eq. (20c) in the T � 1 limit.

The Delta function limit

First a few words about δ-functions in case you haven’t encountered them

before. A δ function is a function with an infinitesimal width and an infinite

height but a unit area. A force described as δ-function in time such as F (t) = δ(t)

is known as a unit impulse which occurs at time t = 0. As you probably know

from both mechanics and circuit theory; it is often relatively easy to describe a

the behavior of a circuit or mechanical system to a voltage or force impulse. The

same is true of quantum mechanical systems.

In quantum mechanics we often think of the a δ-function potential. We can

think of this potential as a rectangular function of width w and height h in the

limit that w → 0 , h→ ∞ , and wh = 1 although there are many other limiting

forms which approach the δ-function as well. The δ-function centered at x = 0

is written as δ(x). To shift the δ-function to the right so that it centers on xo we

translate the function by subtracting xo from its argument or δ(x− xo).
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o

h

0 xo

f(x )

x

δ( x)
δ( x-x o

w

)

The operational definition of the δ-function is as follows:

∫

x∈xo

dx f(x) δ(x− xo) = f(xo) (28)

In words, the integral of the product of f(x) × δ(x − xo) over any interval con-

taining the point xo is just the function evaluated at xo. Its easy to see how our

rectangular representation of δ(x− xo) has this property.

∫

x∈xo

dx f(x) δ(x−xo) = limw→0

xo+w/2∫

xo−w/2

dx h× f(x) = wh× f(xo) = f(xo) (29)

δ-function potentials in the Schrödinger Equation

We write the time independent Schrödinger Equation for the case of a δ-

function potential of strength g or V (x) = g δ(x − xo). In writing this, we

note that dimensions of strength g are energy × distance (eg eV · nm) since

the dimensions of δ(x − xo) are distance−1 in order that
∫
dx δ(x − xo) = 1

(dimensionless).

−h̄2

2m
∂2ψ

∂x2
+ g δ(x− xo)ψ = Eψ (30)

If we restrict ourselves to the region in an infinitesimal neighborhood of xo, it is
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clear that gδ(x− xo) → ∞ � E so we can ignore the righthand side.

h̄2

2m
∂2ψ

∂x2
= g δ(x− xo)ψ (31)

Integrating both sides of the equation from xo − ∆ → Xo + ∆ where ∆ → 0 we

have:

h̄2

2m

xo+∆∫

xo−∆

dx
∂2ψ

∂x2
=

xo+∆∫

xo−∆

dx g δ(x− xo)ψ = gψ(xo)

∂ψ

∂x xo+∆
− ∂ψ

∂x xo−∆
=

2mg
h̄2

ψ(xo) (32)

ψ

δ(V =

=
right

h 2
2 m g+

ψ

o

g ox - x )

ψ
left

x

ψ
left ψ( x o )

x

Hence the δ-function potential creates a discontinuity in the slope of the wave

function which is proportional to the δ-function strength and the value of ψ at the

δ-function location. I will ask you in the exercises to apply Eq. (32) to compute

the transmission coefficient through a δ-function barrier. Here is a check for you.

The a→ 0 but V a = g limit of Eq. (25)

Lets consider this limit for:

T =

(
1 +

sinh2 (βa)
4(E/V )(1 −E/V )

)−1

where β =

√
2m(V − E)

h̄

Since V a is finite, a
√
V or βa → 0 and therefore sinh2 (βa) → β2a2. We also

15



have 4(E/V )(1 −E/V ) → 4E/V since V → ∞. Hence

T =
(

1 +
2ma2(V −E)V

4Eh̄2

)−1

→
(

1 +
ma2V 2

2Eh̄2

)−1

(33)

Inserting aV = g and E = h̄2k2/2m we have:

T =
(

1 +
m2g2

h̄4k2

)−1

(34)

Classically allowed barrier

We next consider the case of a traveling wave incident on a classically allowed

barrier with E > V as illustrated below.

a/2

e

0 0

+c d

-a/2

+ r e

k

e
-

=
1 h

2m (E - V)

x

t i k xe
-ikx

h
k = k = 

2 m E
h

i k x

2 m E

e

E

ik x1ikx1

V

The transmission coefficient for this barrier is:

T =
(

1 +
sin2 (k1a)

4(E/V )(E/V − 1)

)−1

where k1 =

√
2m(E − V )

h̄
(35)

The real difference between this case and the classically forbidden case is the use

of c exp (ik1x) + d exp (−ik1x) rather than c exp (βx) + d exp (−βx) for the

wave function in the 0 < x < a region. Essentially the exponential argument

β → ik1. We note that we can get to Eq. (35) from the forbidden T in Eq. (31)

by the substitution sinh iβ → i sin k1 which describes how a hyperbolic sine of an

imaginary number is related to the usual sine.
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We note from the form of Eq. (35), that we have perfect tranmission whenever

k1a = nπ , n = 1, 2, .... This condition is equivalent to n(λ1/2) = a where λ1

is the electron wavelength in the barrier region. Here is a crude sketch of the

transmission coefficient as a function of E/V :

E/V
1

T

1

The phenemona of 100 % tranmission through a barrier at specific magic en-

ergies or wavelengths is often called transmission resonance. Examples occur

in both atomic and nuclear physics. In atomic physics , one has the Ramsauer

effect (discovered 1908) where noble gas atoms become nearly transparent to sev-

eral volt electrons of of specific energies. A very similar phenomena, known as

“size resonance”. occurs for several MeV neutrons which can pass transparently

through the nucleus at resonant energies.

Transmission resonance at magic wavelengths also occurs in reflections of

electromagnetic waves from thin films as shown below. We have angled the

incident ray a bit for clarity but we will discuss the case of normal incidence.
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The dielectric reflection from the top surface (Ray a) acquires a boundary

phase shift of π, while the reflection from the bottom surface (Ray b) has no

boundary phase shift but acquires an “distance” phase shift of k1(2d) = 2πd/λ,

where λ = λo/N If n(λ/2) = d, the two reflected rays will cancel and destruc-

tively interfere leading to 100% transmission. This is essentially what happens in

the quantum mechanical case as well: the waves reflected as the barrier is entered

and exited interfere destructively.

Quantum Tunneling in the Real World

There are a wide variety of real world phenemena which can be pictured in

terms of tunneling processes.

A example on the nuclear level involves alpha decay whereby a heavy parent

nucleus becomes more stable by losing some electrical charge by ejecting an α

particle. An example is provided by the decay of uranium isotopes:

UA
92 → α4

2 + ThA−4
90

In this notation, A is the atomic weight (the number of neutrons and protons),

the subscript is the atomic number (the number of protons). An α particle is a

helium nucleus which is an unusually stable nucleus consisting of 2 neutrons and

2 protons. The half-life of the various radioactive isotopes depends exponentially

on the energy release as crudely sketched below:
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George Gamow in the 1930’s proposed a quantum tunneling explanation for

nuclear α decay. In this model, the α particle is initially bound by the strong in-

teraction within a nuclear well created by the Thorium nucleus to form Uranium.

The Uranium decays by having the α particle tunnel through the Coulomb bar-

rier of the Thorium nucleus. As depicted below, the gap by which the tunneling

is classically forbidden decreases as the energy release (Q) increases. The de-

cay rate is proportional to the transmission coefficient through the barrier which

depends exponentially on the energy gap.

αU
232

Th 90
228

92

Q = 5 MeV

V

t u n n e l

7 fm

260 MeV fm
r

r

Nuclear α decay is controlled by very, small tranmission coefficients. At

the other extreme, we consider the nearly free motion of conduction electrons
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through a metal. Although electrons are bound within individual metal atoms on

quantum levels of the atomic discrete spectrum, they exhibit nearly free motion

in a metal crystal where there is regularly spaced lattice of ions on a spacing of

a few tenths of a nanometer.

several 
tenths
  nm

We can think of the loosely bound valence electrons in outer orbitals as

jumping from ion to ion by quantum tunneling through fairly weak barriers owing

to the narrow width and small depth of the effective interatomic barrier. We will

discuss this in depth on our chapter on Crystals.

The Scanning Tunneling Microscope

A very impressive device which exploits the extreme sensitivity of quantum

tunneling is called the Scanning Tunneling Microscope (STM) developed by Gerd

Binnig and Heinrich Rohrer of the IBM Zurich Research Laboratory in 1981.

They won the 1986 Nobel Prize for Physics for this achievement. The basic idea

of the STM is sketched below:
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The STM determines the distance between a surface and probe to atomic

distance scales by measuring the quantum tunneling current of electrons leaving

the sample and entering the probe. The quantum barrier to electron flow is

essentially the work function of the metal. Recall from the photoelectric effect

that it requires a certain minimum energy to photoeject an electron from a metal

surface. In terms of a potential, we can say that the metal surface has a potential

which lies below the potential of free space (vacuum). This minimum potential

or work function (Φ) is typically several electron volts for most surfaces. Because

of the work function, electrons will be bound within the surface. A naked surface

will contain its electrons in analogy with a step barrier. The wavefunction outside

the metal will be a classically forbidden wave function ψ(x) = exp (−βx) where

β =
√

2mΦ/h̄, and there will be no electron current out of the surface. If one

brings up a metal probe within a few atomic dimensions of the surface, one will

form a quantum barrier rather than a step and it will be possible for electrons

to quantum tunnel from the sample to the probe. Essentially the vacuum gap
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region (V = 0) acts as the quantum barrier to the electrons which lie at a few

volts below vacuum potential.

The STM measures the gap between the surface and probe by measuring the

size of the quantum tunneling current. In order to achieve a net current, it is

necessary to induce an asymmmetry such that the tunneling current from the

sample surface to the probe is not cancelled by an opposite tunneling current

from the probe to the surface. To insure this asymmetry, the probe is typically

biased a few millivolts below the surface being studied. The tunneling current

is proportional to the surface electron density, the small bias potential, and the

barrier transmission coefficient. This transmission coefficient depends exponen-

tially on the gap between the surface and the probe. The probe is “scanned”

across the sample surface in much the same way as a television raster pattern,

and the tunnel current forms either a gray scale or pseudo-color picture of the

surface height. It is possible to resolve variations in the tunneling current due to

individual atoms changing the surface to probe barrier gap!

This is the concept but like any technological innovation, the devil is in the

details. For example, in order to resolve individual atoms, one needs a probe

tip which is only a few atoms wide. It is relatively easy to electochemically

etch metals to achieve micron diameter wires, but this is about 10000 times

too coarse. My understanding is that Binnig and Rohrer began with micron

diameter tungsten needles which were then micro-pitted by placing them in a

strong electric field which dislodge atoms on the surface leaving sharp points

behind. The object was not to get one precisely polished micro-tip as depicted

above, but one particularly sharp point which dominates the tunneling.

Another problem is mechanical oscillation due to room vibration. Typical

vibration amplitudes are about a micron which is again 10000 times larger than

the ≈0.1 nm required gap for good tunneling. These vibrations are damped by

using a series of mechanical stages with carefully controlled natural vibration

frequencies selected to block transmission of vibrations over a wide band width.
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In addition they used copper plates and magnets designed to damp vibrations

by dissipating eddy currents.

Finally one has the apparently formidable problem of controlling the probe

position on the scale of atomic dimensions. The elegant solution employed by

Binnig and Rohrer was to position the probe using a three point support consist-

ing of three piezoelectric ceramics which expands or contracts by a few tenths of

nanometer per applied volt. The tripod support allows the probe to be advanced

to the surface (equal expansion of the ceramics) angled (unequal expansion) to

affect a transverse scan. In one incarnation, one feeds the tunneling current

through a control loop designed to maintain a constant tunnel current by having

the probe follow the surface topography and thus maintain a constant gap. The

display is then tied to the piezoelectric control current.

Not only can surfaces be measured, but the electrostatics of the probe can

create forces which enable manipulation on the atomic level. A very impressive

demonstration of this involved using an STM probe to nudge individual Xenon

atoms to spell a word on a substate. Here is an crude artist’s conception.

Because the distance between the probe and the sample is so small, there is

little chance of air molecules slipping in between the tunneling gap. STM studies

can be performed in air, oils, and even electrolytic solutions. This extends the

reach of the instrument to physics, chemistry, engineering and microbiology.
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Important Points

1. The quantum mechanical (probability) current density is given by

~J =
h̄

2mi

(
Ψ∗~∇Ψ − Ψ~∇Ψ∗

)
=

h̄

m
Im
(
Ψ∗~∇Ψ

)

The usual electric current density is equal to the charge × probability

current density. In one dimension ~∇ = x̂∂/∂x.

2. The traveling wave Ψ(x, t) = a exp (ikx− iωt) carries the probability cur-

rent ~J = (a∗a) k
m x̂.

3. In barrier transmission problems we send in an incident traveling wave of

the form ψ(x) = e+ik1x which strikes the barrier producing a reflected wave

(re−ik1x) and a transmitted wave ( te+ik2x). The reflection and transmission

coefficients are the ratios of the modulus of the reflected or transmitted

currents to the incident current.

R = r∗r , T =
k2

k1
t∗t , R+ T = 1

By matching boundary conditions for the case of a step boundary we obtained

for a classically allowed step:

T =
4k1k2

(k1 + k2)
2 R =

(k1 − k2)
2

(k1 + k2)
2

where k1 and k2 are the wave vectors in the two regions. For a classically forbid-

den step T=0 and R=1 but the reflected wave is phase shifted.

4. For a classically forbidden square bump barrier with a low transmission

coefficient:

T ≈ 16(E/V )(1 − E/V ) e−2βa

where a is the width of the barrier and β =
√

2m(V − E)/h̄.
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5. One can have 100 % transmission through a classically allowed square bump

barrier when the width is an integral number of half wavelengths (wave-

lengths in the barrier). This is the same condition for 100 % transmission

through a thin film.

6. We discussed several real work applications of quantum tunneling. The

conduction of electrons in a metal can be thought of as quantum tunneling

between the closely spaced atoms of the lattice. In the low tranmission

limit one has the Gamow model for α emission, and the scanning tunneling

microscope. All these phenomena are hypersensitive to small differences in

the energy or width of the barrier.
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