Homework 1

PHYS 485: Fall 2017
Due Date: 09/13/2017

To recieve fully credit please write legibly and clearly, show all required steps and calculations and answer any explicit questions in full sentences.

I. LIGHT [5]

1. Consider an electromagnetic wave described by $\vec{B}=B_{0} \cos (k x-\omega t) \hat{y}$. Draw this wave at $t=0$ and label axes, E, B, and its wavelength λ on your drawing. [2]
2. Draw the same electromagnetic wave but shifted by $\lambda / 4$ on a plot directly below the one in part 1. [1]
3. If this light wave has frequency of $\nu=4.2 \times 10^{14} \mathrm{~Hz}$, then what is λ ? What energy does a photon of this frequency have? [2]

II. PHOTOELECTRIC EFFECT [8]

The amount of energy sufficient to remove an electron from the surface of gold i.e. the work function of gold is 5.10 eV . In a photoelectric device (see Fig. 1.12 in Townsend), upon bombarding the surface of a gold leaf with photons, electrons moving at the speed of $1.55 \times 10^{5} \mathrm{~m} / \mathrm{s}$ are detected.

1. What is the kinetic energy of one of electrons? Express your answer in eV. [1]
2. What is the energy of one of photons? [2]
3. What is the wavelength of one of these photons? [1]
4. What is the cutoff wavelength of light for gold? [2]
5. If the intensity of incident light is $3.0 \mathrm{~W} / \mathrm{m}^{2}$, what is the average number of photons n that strike the gold surface in 1 second if the linear dimension of the surface is 1 m ? [2]

III. BEAM SPLITTERS AND THE "PHYSICS OF THE RESISTANCE" [9]

A long time ago in a galaxy far, far away, imagine that you join the Resistance and get tasked with using a MachZender type beam splitter (see Fig. 1. 23 in Townsend and the sketch below) to transmit messages of wavelength λ from the planet D'Qar (point A) to the Millenium Falcon (point D). If PM_{2}, aboard the Millenium Falcon, records no signal the message is coded as 0 while a signal - a count - is coded as 1 thus allowing for communication. You are allowed to move the beam splitter at A. We assume that radiowaves are used and no atmospheric interference is present. Additionally, take B and C to be mirrors that reflect all of the radiowave, and A and D to be beam splitters that reflect $1 / 2$ of the wave and transmit the other $1 / 2$.

1. The effect of moving the beam splitter is to change the path length difference between the two possible paths to PM_{2}. Using your knowledge of conditions for complete constructive and destructive interference of waves taking two paths, give the minimum change in path length difference required to go from a full signal to no signal if the radiowaves have wavelength $\lambda=1 \mathrm{~cm}$. Give your reasoning. [2]
2. What is the probability amplitude for the photon to reach PM_{2} along the path $A B D$, denoted by $z_{A B D}$? What about $z_{A C D}$? Take careful note on whether the probability amplitudes for each leg of the path are multiplied or added and briefly discuss the correct approach. [4]
3. What is the probability for a photon to be detected by PM_{2} ? Express it in terms of λ. Should you add or multiply the results of the previous question? Why? [3]

IV. MATTER WAVES [8]

A single electron is used in a double slit experiment where the distance between the slits and the detector is $L=10$ m and the two slits are separated by $d=0.1 \mathrm{~mm}$. In the detected intereference pattern the separation δy between the central maximum and the next adjacent maximum is 6.33 cm .

1. Draw a sketch of this set-up marking all the given quantities. [1]
2. What is the de Broglie wavelength λ_{dB} of this electron? Hint: use the small angle approximation $\sin \theta \simeq \tan \theta \simeq$ θ. [3]
3. What is the momentum of this electron? Would this momentum change if we used a photon with the same wavelength $\lambda_{\mathrm{ph}}=\lambda_{\mathrm{dB}}$? Explain. [2]
4. What is the kinetic energy of this electron? Would this energy change if we used a photon with the same wavelength $\lambda_{\mathrm{ph}}=\lambda_{\mathrm{dB}}$? Explain. [2]
